Algebraic geometry
Strong stability of cotangent bundles of cyclic covers
[Stabilité forte du fibré cotangent des revêtements cycliques]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 639-644.

Soit X une varieté projective lisse sur un corps algébriquement clos k de caractéristique p>0 de dimension dimX4 et avec nombre de Picard ρ(X)=1. Supposons que X satisfasse Hi(X,FXm(ΩXj)L1)=0 pour tout fibré en droite ample L sur X et tous nombres entiers m,i,j tels que 0i+j<dimX, où FX:XX est le morphisme de Frobenius absolu. Soit Y une varieté lisse obtenue par X en prenant des sections hyperplanes lisses de dimension ≥3 et des revêtements cycliques le long des diviseurs lisses. Si le fibré canonique ωY est ample (resp. nef), alors on montre que ΩY est fortement stable (resp. fortement semistable) par rapport à n'importe quelle polarisation.

Let X be a smooth projective variety over an algebraically closed field k of characteristic p>0 of dimX4 and Picard number ρ(X)=1. Suppose that X satisfies Hi(X,FXm(ΩXj)L1)=0 for any ample line bundle L on X, and any nonnegative integers m,i,j with 0i+j<dimX, where FX:XX is the absolute Frobenius morphism. Let Y be a smooth variety obtained from X by taking hyperplane sections of dim ≥3 and cyclic covers along smooth divisors. If the canonical bundle ωY is ample (resp. nef), then we prove that ΩY is strongly stable (resp. strongly semistable) with respect to any polarization.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.04.011
Li, Lingguang 1 ; Shentu, Junchao 2

1 Department of Mathematics, Tongji University, Shanghai, PR China
2 Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing, PR China
@article{CRMATH_2014__352_7-8_639_0,
     author = {Li, Lingguang and Shentu, Junchao},
     title = {Strong stability of cotangent bundles of cyclic covers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {639--644},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/}
}
TY  - JOUR
AU  - Li, Lingguang
AU  - Shentu, Junchao
TI  - Strong stability of cotangent bundles of cyclic covers
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 639
EP  - 644
VL  - 352
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/
DO  - 10.1016/j.crma.2014.04.011
LA  - en
ID  - CRMATH_2014__352_7-8_639_0
ER  - 
%0 Journal Article
%A Li, Lingguang
%A Shentu, Junchao
%T Strong stability of cotangent bundles of cyclic covers
%J Comptes Rendus. Mathématique
%D 2014
%P 639-644
%V 352
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/
%R 10.1016/j.crma.2014.04.011
%G en
%F CRMATH_2014__352_7-8_639_0
Li, Lingguang; Shentu, Junchao. Strong stability of cotangent bundles of cyclic covers. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 639-644. doi : 10.1016/j.crma.2014.04.011. http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/

[1] Biswas, I. Tangent bundle of a complete intersection, Trans. Amer. Math. Soc., Volume 362 (2010) no. 6, pp. 3149-3160

[2] Grothendieck, A. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Adv. Stud. Pure Math., vol. 2, North-Holland Publishing Co./Masson & Cie, Amsterdam/Paris, 1968

[3] Joshi, K. Kodaira–Akizuki–Nakano vanishing: a variant, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 171-176

[4] Li, G.; Yu, F. Instability of truncated symmetric powers of sheaves, J. Algebra, Volume 386 (2013), pp. 176-189

[5] Noma, A. Stability of Frobenius pull-backs of tangent bundles and generic injectivity of Gauss maps in positive characteristic, Compos. Math., Volume 106 (1997), pp. 61-70

[6] Noma, A. Stability of Frobenius pull-backs of tangent bundles of weighted complete intersections, Math. Nachr., Volume 221 (2001), pp. 87-93

[7] Peternell, T.; Wiśniewski, J. On the stability of tangent bundles of Fano manifolds, J. Algebr. Geom., Volume 4 (1995), pp. 363-384

[8] Sun, X. Direct images of bundles under Frobenius morphisms, Invent. Math., Volume 173 (2008) no. 2, pp. 427-447

[9] Sun, X. Stability of sheaves of locally closed and exact forms, J. Algebra, Volume 324 (2010), pp. 1471-1482

Cité par Sources :

The first author is supported by the National Natural Science Foundation of China (No. 11271275).