Soit X une varieté projective lisse sur un corps algébriquement clos k de caractéristique de dimension et avec nombre de Picard . Supposons que X satisfasse pour tout fibré en droite ample sur X et tous nombres entiers tels que , où est le morphisme de Frobenius absolu. Soit Y une varieté lisse obtenue par X en prenant des sections hyperplanes lisses de dimension ≥3 et des revêtements cycliques le long des diviseurs lisses. Si le fibré canonique est ample (resp. nef), alors on montre que est fortement stable (resp. fortement semistable) par rapport à n'importe quelle polarisation.
Let X be a smooth projective variety over an algebraically closed field k of characteristic of and Picard number . Suppose that X satisfies for any ample line bundle on X, and any nonnegative integers with , where is the absolute Frobenius morphism. Let Y be a smooth variety obtained from X by taking hyperplane sections of dim ≥3 and cyclic covers along smooth divisors. If the canonical bundle is ample (resp. nef), then we prove that is strongly stable (resp. strongly semistable) with respect to any polarization.
Accepté le :
Publié le :
@article{CRMATH_2014__352_7-8_639_0, author = {Li, Lingguang and Shentu, Junchao}, title = {Strong stability of cotangent bundles of cyclic covers}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--644}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.04.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/} }
TY - JOUR AU - Li, Lingguang AU - Shentu, Junchao TI - Strong stability of cotangent bundles of cyclic covers JO - Comptes Rendus. Mathématique PY - 2014 SP - 639 EP - 644 VL - 352 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/ DO - 10.1016/j.crma.2014.04.011 LA - en ID - CRMATH_2014__352_7-8_639_0 ER -
%0 Journal Article %A Li, Lingguang %A Shentu, Junchao %T Strong stability of cotangent bundles of cyclic covers %J Comptes Rendus. Mathématique %D 2014 %P 639-644 %V 352 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/ %R 10.1016/j.crma.2014.04.011 %G en %F CRMATH_2014__352_7-8_639_0
Li, Lingguang; Shentu, Junchao. Strong stability of cotangent bundles of cyclic covers. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 639-644. doi : 10.1016/j.crma.2014.04.011. http://www.numdam.org/articles/10.1016/j.crma.2014.04.011/
[1] Tangent bundle of a complete intersection, Trans. Amer. Math. Soc., Volume 362 (2010) no. 6, pp. 3149-3160
[2] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Adv. Stud. Pure Math., vol. 2, North-Holland Publishing Co./Masson & Cie, Amsterdam/Paris, 1968
[3] Kodaira–Akizuki–Nakano vanishing: a variant, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 171-176
[4] Instability of truncated symmetric powers of sheaves, J. Algebra, Volume 386 (2013), pp. 176-189
[5] Stability of Frobenius pull-backs of tangent bundles and generic injectivity of Gauss maps in positive characteristic, Compos. Math., Volume 106 (1997), pp. 61-70
[6] Stability of Frobenius pull-backs of tangent bundles of weighted complete intersections, Math. Nachr., Volume 221 (2001), pp. 87-93
[7] On the stability of tangent bundles of Fano manifolds, J. Algebr. Geom., Volume 4 (1995), pp. 363-384
[8] Direct images of bundles under Frobenius morphisms, Invent. Math., Volume 173 (2008) no. 2, pp. 427-447
[9] Stability of sheaves of locally closed and exact forms, J. Algebra, Volume 324 (2010), pp. 1471-1482
Cité par Sources :
☆ The first author is supported by the National Natural Science Foundation of China (No. 11271275).