Partial differential equations
Averaged control and observation of parameter-depending wave equations
[Contrôle et observation en moyenne d'équations des ondes dépendant de paramètres]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 497-502.

On étudie le problème de l'observation et contrôle en moyenne d'équations des ondes.

Ce sujet est motivé par le contrôle d'équations des ondes dépendant de paramètres. On s'intéresse à la contrôlabilité des moyennes des états par rapport aux paramètres. Ceci équivaut au problème de l'observation des états adjoints dépendant des paramètres, mais tous avec les mêmes données initiales, en utilisant l'observation des moyennes.

Le problème considéré est plus faible que celui de la contrôlabilité ou de l'observabilité simultanées étudié antérieurement.

La méthode de démonstration s'appuie sur des arguments de propagation qui utilisent les H-mesures ou mesures de défaut microlocales, qui réduisent le problème à des questions de continuation unique.

En utilisant des arguments de transmutation, on obtient aussi quelques résultats pour le contrôle et l'observation en moyenne pour des équations paraboliques dépendant de paramètres.

We analyze the problem of averaged observability and control of wave equations.

This topic is motivated by the control of parameter-dependent systems of wave equations. We look for controls ensuring the controllability of the averages of the states with respect to the parameter. This turns out to be equivalent to the problem of averaged observation in which one aims at recovering the energy of the initial data of the adjoint system by measurements done on its averages, under the assumption that the initial data of all the components of the adjoint system coincide.

The problem under consideration is weaker than the classical notion of simultaneous observation and control.

The method of proof uses propagation arguments based on H-measures or microlocal defect measures that reduce the problem to non-standard unique-continuation issues.

Using transmutation techniques, we also derive some results on the averaged observation and control of parameter-dependent heat equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.04.007
Lazar, Martin 1 ; Zuazua, Enrique 2, 3

1 University of Dubrovnik, Department of Electrical Engineering and Computing, Ćira Carića 4, 20 000 Dubrovnik, Croatia
2 BCAM – Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009 Bilbao, Basque Country, Spain
3 Ikerbasque – Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Basque Country, Spain
@article{CRMATH_2014__352_6_497_0,
     author = {Lazar, Martin and Zuazua, Enrique},
     title = {Averaged control and observation of parameter-depending wave equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {497--502},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.007/}
}
TY  - JOUR
AU  - Lazar, Martin
AU  - Zuazua, Enrique
TI  - Averaged control and observation of parameter-depending wave equations
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 497
EP  - 502
VL  - 352
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.04.007/
DO  - 10.1016/j.crma.2014.04.007
LA  - en
ID  - CRMATH_2014__352_6_497_0
ER  - 
%0 Journal Article
%A Lazar, Martin
%A Zuazua, Enrique
%T Averaged control and observation of parameter-depending wave equations
%J Comptes Rendus. Mathématique
%D 2014
%P 497-502
%V 352
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.04.007/
%R 10.1016/j.crma.2014.04.007
%G en
%F CRMATH_2014__352_6_497_0
Lazar, Martin; Zuazua, Enrique. Averaged control and observation of parameter-depending wave equations. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 497-502. doi : 10.1016/j.crma.2014.04.007. http://www.numdam.org/articles/10.1016/j.crma.2014.04.007/

[1] Alabau-Boussouira, F.; Léautaud, M. Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., Volume 99 (2013) no. 5, pp. 544-576

[2] Ammar-Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L. Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Relat. Fields, Volume 1 (2011) no. 3, pp. 267-306

[3] Burq, N. Contrôle de l'équation des ondes dans des ouverts peu réguliers, Asymptot. Anal., Volume 14 (1997) no. 2, pp. 157-191

[4] Burq, N.; Gérard, P. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I., Volume 325 (1997) no. 7, pp. 749-752

[5] Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065

[6] Dehman, B.; Léautaud, M.; Le Rousseau, J. Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 113-187

[7] Ervedoza, S.; Zuazua, E. Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 3, pp. 975-1017

[8] Fernández-Cara, E.; Zuazua, E. The cost of approximate controllability for heat equations: the linear case, Adv. Differ. Equ., Volume 5 (2000) no. 4–6, pp. 465-514

[9] Gérard, P. Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991) no. 11, pp. 1761-1794

[10] Hörmander, L. On the uniqueness of the Cauchy problem. II, Math. Scand., Volume 7 (1959), pp. 177-190

[11] Tartar, L. H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. R. Soc. Edinb. A, Volume 115 (1990) no. 3–4, pp. 193-230

[12] Zuazua, E. Averaged control, 2013 http://www.bcamath.org/documentos_public/archivos/publicaciones/averaged-zuazua2.pdf (preprint)

Cité par Sources :