L'entropie constitue une notion éssentielle de la théorie des systèmes dynamiques. Les calculs des diverses entropies sont importants, mais souvent difficiles. On donne ici la formule structurelle de Brin–Katok pour la r-entropie au sens de la théorie de la mesure.
Entropy is undoubtedly among the most essential characteristics of dynamical systems. Calculations of various entropies are important but often difficult. This article is devoted to constructing the Brin–Katok formula for the measure theoretic r-entropy.
Accepté le :
Publié le :
@article{CRMATH_2014__352_6_473_0, author = {Zhou, Xiaoyao and Zhou, Longnian and Chen, Ercai}, title = {Brin{\textendash}Katok formula for the measure theoretic \protect\emph{r}-entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {473--477}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.04.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/} }
TY - JOUR AU - Zhou, Xiaoyao AU - Zhou, Longnian AU - Chen, Ercai TI - Brin–Katok formula for the measure theoretic r-entropy JO - Comptes Rendus. Mathématique PY - 2014 SP - 473 EP - 477 VL - 352 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/ DO - 10.1016/j.crma.2014.04.005 LA - en ID - CRMATH_2014__352_6_473_0 ER -
%0 Journal Article %A Zhou, Xiaoyao %A Zhou, Longnian %A Chen, Ercai %T Brin–Katok formula for the measure theoretic r-entropy %J Comptes Rendus. Mathématique %D 2014 %P 473-477 %V 352 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/ %R 10.1016/j.crma.2014.04.005 %G en %F CRMATH_2014__352_6_473_0
Zhou, Xiaoyao; Zhou, Longnian; Chen, Ercai. Brin–Katok formula for the measure theoretic r-entropy. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 473-477. doi : 10.1016/j.crma.2014.04.005. http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/
[1] (Lecture Notes in Mathematics), Volume vol. 1007, Springer, Berlin (1983), pp. 30-38
[2] Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., Ser. A, Volume 32 (2012) no. 2, pp. 487-497
[3] A Billingsley type theorem for Bowen entropy, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 503-507
[4] On the variational principle for the topological pressure for certain non-compact sets, Sci. China Math., Volume 53 (2010) no. 4, pp. 1117-1128
[5] Dimension Theory in Dynamical Systems Contemporary Views and Applications, University of Chicago Press, Chicago, IL, USA, 1997
[6] On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 929-956
[7] Topological r-entropy and measure-theoretic r-entropy of a continuous map, Sci. China Math., Volume 54 (2011) no. 6, pp. 1197-1205
[8] Entropy formulas for dynamical systems with mistakes, Discrete Contin. Dyn. Syst., Ser. A, Volume 32 (2012) no. 12, pp. 4391-4407
[9] A variational principle for topological pressure for certain non-compact sets, J. Lond. Math. Soc., Volume 80 (2009), pp. 585-602
[10] The irregular set for maps with the specification property has full topological pressure, Dyn. Syst., Volume 25 (2010) no. 1, pp. 25-51
[11] Irregular sets, the beta-transformation and the almost specification property, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 5395-5414
[12] Topological pressure of the set of generic points for -actions, Kyushu J. Math., Volume 63 (2009), pp. 191-208
[13] On local entropy of random transformations, Stoch. Dyn., Volume 8 (2008), pp. 197-207
[14] Two notes on measure-theoretic entropy of random dynamical systems, Acta Math. Sin., Volume 25 (2009), pp. 961-970
[15] Topological pressure of historic set for -actions, J. Math. Anal. Appl., Volume 389 (2012), pp. 394-402
Cité par Sources :