Mathematical analysis/Dynamical systems
Brin–Katok formula for the measure theoretic r-entropy
[Formule de Brin–Katok pour la mesure de la r-entropie au sens de la théorie de la mesure]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 473-477.

L'entropie constitue une notion éssentielle de la théorie des systèmes dynamiques. Les calculs des diverses entropies sont importants, mais souvent difficiles. On donne ici la formule structurelle de Brin–Katok pour la r-entropie au sens de la théorie de la mesure.

Entropy is undoubtedly among the most essential characteristics of dynamical systems. Calculations of various entropies are important but often difficult. This article is devoted to constructing the Brin–Katok formula for the measure theoretic r-entropy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.04.005
Zhou, Xiaoyao 1, 2 ; Zhou, Longnian 1 ; Chen, Ercai 1, 3

1 School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China
2 Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
3 Center of Nonlinear Science, Nanjing University, Nanjing 210093, PR China
@article{CRMATH_2014__352_6_473_0,
     author = {Zhou, Xiaoyao and Zhou, Longnian and Chen, Ercai},
     title = {Brin{\textendash}Katok formula for the measure theoretic \protect\emph{r}-entropy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {473--477},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/}
}
TY  - JOUR
AU  - Zhou, Xiaoyao
AU  - Zhou, Longnian
AU  - Chen, Ercai
TI  - Brin–Katok formula for the measure theoretic r-entropy
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 473
EP  - 477
VL  - 352
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/
DO  - 10.1016/j.crma.2014.04.005
LA  - en
ID  - CRMATH_2014__352_6_473_0
ER  - 
%0 Journal Article
%A Zhou, Xiaoyao
%A Zhou, Longnian
%A Chen, Ercai
%T Brin–Katok formula for the measure theoretic r-entropy
%J Comptes Rendus. Mathématique
%D 2014
%P 473-477
%V 352
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/
%R 10.1016/j.crma.2014.04.005
%G en
%F CRMATH_2014__352_6_473_0
Zhou, Xiaoyao; Zhou, Longnian; Chen, Ercai. Brin–Katok formula for the measure theoretic r-entropy. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 473-477. doi : 10.1016/j.crma.2014.04.005. http://www.numdam.org/articles/10.1016/j.crma.2014.04.005/

[1] Brin, M.; Katok, A. (Lecture Notes in Mathematics), Volume vol. 1007, Springer, Berlin (1983), pp. 30-38

[2] Cheng, W.; Zhao, Y.; Cao, Y. Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., Ser. A, Volume 32 (2012) no. 2, pp. 487-497

[3] Ma, J.; Wen, Z. A Billingsley type theorem for Bowen entropy, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 503-507

[4] Pei, Y.; Chen, E. On the variational principle for the topological pressure for certain non-compact sets, Sci. China Math., Volume 53 (2010) no. 4, pp. 1117-1128

[5] Pesin, Y. Dimension Theory in Dynamical Systems Contemporary Views and Applications, University of Chicago Press, Chicago, IL, USA, 1997

[6] Pfister, C.; Sullivan, W. On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 929-956

[7] Ren, Y.; He, L.; Lu, J.; Zheng, G. Topological r-entropy and measure-theoretic r-entropy of a continuous map, Sci. China Math., Volume 54 (2011) no. 6, pp. 1197-1205

[8] Rousseau, J.; Varandas, P.; Zhao, Y. Entropy formulas for dynamical systems with mistakes, Discrete Contin. Dyn. Syst., Ser. A, Volume 32 (2012) no. 12, pp. 4391-4407

[9] Thompson, D. A variational principle for topological pressure for certain non-compact sets, J. Lond. Math. Soc., Volume 80 (2009), pp. 585-602

[10] Thompson, D. The irregular set for maps with the specification property has full topological pressure, Dyn. Syst., Volume 25 (2010) no. 1, pp. 25-51

[11] Thompson, D. Irregular sets, the beta-transformation and the almost specification property, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 5395-5414

[12] Yamamoto, K. Topological pressure of the set of generic points for Zd-actions, Kyushu J. Math., Volume 63 (2009), pp. 191-208

[13] Zhu, Y. On local entropy of random transformations, Stoch. Dyn., Volume 8 (2008), pp. 197-207

[14] Zhu, Y. Two notes on measure-theoretic entropy of random dynamical systems, Acta Math. Sin., Volume 25 (2009), pp. 961-970

[15] Zhou, X.; Chen, E. Topological pressure of historic set for Zd-actions, J. Math. Anal. Appl., Volume 389 (2012), pp. 394-402

Cité par Sources :