Nous calculons l'algèbre des isovecteurs de l'équation de Hamilton–Jacobi–Bellman lorsque le potentiel appartient à une certaine classe, qui inclut strictement celle des potentiels quadratiques, et en déterminons ensuite une base canonique. Ce cadre nous permet de paramétrer canoniquement l'importante classe des modèles affines de taux d'intérêt à un facteur.
We compute the isovector algebra of the Hamilton–Jacobi–Bellman equation when the potential belongs to a class that strictly includes quadratic potentials, and then determine a canonical basis for it. This setting allows us to parameterize canonically the important class of one factor interest rate models.
Accepté le :
Publié le :
@article{CRMATH_2014__352_6_525_0, author = {Lescot, Paul and Quintard, H\'el\`ene}, title = {Symmetries of the backward heat equation with potential and interest rate models}, journal = {Comptes Rendus. Math\'ematique}, pages = {525--528}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.024/} }
TY - JOUR AU - Lescot, Paul AU - Quintard, Hélène TI - Symmetries of the backward heat equation with potential and interest rate models JO - Comptes Rendus. Mathématique PY - 2014 SP - 525 EP - 528 VL - 352 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.03.024/ DO - 10.1016/j.crma.2014.03.024 LA - en ID - CRMATH_2014__352_6_525_0 ER -
%0 Journal Article %A Lescot, Paul %A Quintard, Hélène %T Symmetries of the backward heat equation with potential and interest rate models %J Comptes Rendus. Mathématique %D 2014 %P 525-528 %V 352 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.03.024/ %R 10.1016/j.crma.2014.03.024 %G en %F CRMATH_2014__352_6_525_0
Lescot, Paul; Quintard, Hélène. Symmetries of the backward heat equation with potential and interest rate models. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 525-528. doi : 10.1016/j.crma.2014.03.024. http://www.numdam.org/articles/10.1016/j.crma.2014.03.024/
[1] Geometric approach to invariance groups and solution of partial differential systems, J. Math. Phys., Volume 12 (1971), pp. 653-666
[2] Introduction aux variétés différentielles, Collection Grenoble Sciences, Presses universitaires de Grenoble, 1996
[3] Path-dependent options on yields in the affine term structure model, Finance Stoch., Volume 2 (1998) no. 4, pp. 349-367
[4] Symmetries of the Black–Scholes equation, Methods Appl. Anal., Volume 19 (2012), pp. 147-160
[5] Isovectors for the Hamilton–Jacobi–Bellman equation, formal stochastic differentials and first integrals in Euclidean quantum mechanics, Seminar on Stochastic Analysis, Random Fields and Applications IV, Progr. Probab., vol. 58, Birkhäuser, Basel, 2004, pp. 187-202
[6] Probabilistic deformation of contact geometry, diffusion processes and their quadratures, Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., vol. 59, Birkhäuser, Basel, 2008, pp. 203-226
[7] P. Lescot, H. Quintard, J.-C. Zambrini, Solving stochastic differential equations with Cartan's exterior differential system, in preparation.
[8] Symmetries in the stochastic calculus of variation, Probab. Theory Relat. Fields, Volume 107 (1997), pp. 401-427
[9] Euclidean quantum mechanics, Phys. Rev. A, Volume 35 (1987) no. 9, pp. 3630-3649
Cité par Sources :