Nous montrons que les carrés des transformations de Riesz sur des produits de groupes abéliens discrets ont une norme bornée par la constante , avec , . Cette constante est optimale dans le cas de goupes infinis pour certains opérateurs, parmi lesquels . Pour d'autres opérateurs, parmi lesquels , la constante optimale est donnée par la constante de Choi. Il s'agit des premières estimations optimales connues d'opérateurs discrets de type Calderón–Zygmund.
We show that multipliers of second-order Riesz transforms on products of discrete Abelian groups enjoy the estimate , where , . This estimate is sharp for certain multipliers such as on products of infinite groups. For other multipliers such as , the best possible estimate is given by the Choi constant. Those are the first known sharp estimates of discrete Calderón–Zygmund operators.
@article{CRMATH_2014__352_6_503_0, author = {Domelevo, Komla and Petermichl, Stefanie}, title = {Sharp $ {L}^{p}$ estimates for discrete second-order {Riesz} transforms}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--506}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/} }
TY - JOUR AU - Domelevo, Komla AU - Petermichl, Stefanie TI - Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms JO - Comptes Rendus. Mathématique PY - 2014 SP - 503 EP - 506 VL - 352 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/ DO - 10.1016/j.crma.2014.03.022 LA - en ID - CRMATH_2014__352_6_503_0 ER -
%0 Journal Article %A Domelevo, Komla %A Petermichl, Stefanie %T Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms %J Comptes Rendus. Mathématique %D 2014 %P 503-506 %V 352 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/ %R 10.1016/j.crma.2014.03.022 %G en %F CRMATH_2014__352_6_503_0
Domelevo, Komla; Petermichl, Stefanie. Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 503-506. doi : 10.1016/j.crma.2014.03.022. http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/
[1] Sharp inequalities for martingales and stochastic integrals, Palaiseau, 1987 (Astérisque), Volume 157–158 (1988), pp. 75-94
[2] A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in , Trans. Amer. Math. Soc., Volume 330 (1992) no. 2, pp. 509-529
[3] Dimension free estimates for discrete Riesz transforms on products of Abelian groups, Adv. Math., Volume 185 (2004) no. 2, pp. 289-327
[4] Transformations de Riesz pour les lois gaussiennes, Seminar on Probability, XVIII, Lecture Notes in Mathematics, vol. 1059, Springer, Berlin, 1984, pp. 179-193
[5] Riesz transforms: a simpler analytic proof of P.-A. Meyer's inequality, Séminaire de probabilités, XXII, Lecture Notes in Mathematics, vol. 1321, Springer, Berlin, 1988, pp. 485-501
[6] Some results in harmonic analysis in , for , Bull. Amer. Math. Soc. (N.S.), Volume 9 (1983) no. 1, pp. 71-73
[7] Heat extension of the Beurling operator and estimates for its norm, St. Petersburg Math. J., Volume 15 (2004) no. 4, pp. 563-573
Cité par Sources :