Harmonic analysis
Sharp Lp estimates for discrete second-order Riesz transforms
Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 503-506.

Nous montrons que les carrés des transformations de Riesz sur des produits de groupes abéliens discrets ont une norme Lp bornée par la constante (p1), avec p=max{p,q}, 1/p+1/q=1. Cette constante est optimale dans le cas de goupes infinis pour certains opérateurs, parmi lesquels R1R1R2R2. Pour d'autres opérateurs, parmi lesquels R1R1, la constante optimale est donnée par la constante de Choi. Il s'agit des premières estimations Lp optimales connues d'opérateurs discrets de type Calderón–Zygmund.

We show that multipliers of second-order Riesz transforms on products of discrete Abelian groups enjoy the Lp estimate (p1), where p=max{p,q}, 1/p+1/q=1. This estimate is sharp for certain multipliers such as R1R1R2R2 on products of infinite groups. For other multipliers such as R1R1, the best possible estimate is given by the Choi constant. Those are the first known sharp Lp estimates of discrete Calderón–Zygmund operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.022
@article{CRMATH_2014__352_6_503_0,
     author = {Domelevo, Komla and Petermichl, Stefanie},
     title = {Sharp $ {L}^{p}$ estimates for discrete second-order {Riesz} transforms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {503--506},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/}
}
TY  - JOUR
AU  - Domelevo, Komla
AU  - Petermichl, Stefanie
TI  - Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 503
EP  - 506
VL  - 352
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/
DO  - 10.1016/j.crma.2014.03.022
LA  - en
ID  - CRMATH_2014__352_6_503_0
ER  - 
%0 Journal Article
%A Domelevo, Komla
%A Petermichl, Stefanie
%T Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms
%J Comptes Rendus. Mathématique
%D 2014
%P 503-506
%V 352
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/
%R 10.1016/j.crma.2014.03.022
%G en
%F CRMATH_2014__352_6_503_0
Domelevo, Komla; Petermichl, Stefanie. Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 503-506. doi : 10.1016/j.crma.2014.03.022. http://www.numdam.org/articles/10.1016/j.crma.2014.03.022/

[1] Burkholder, Donald L. Sharp inequalities for martingales and stochastic integrals, Palaiseau, 1987 (Astérisque), Volume 157–158 (1988), pp. 75-94

[2] Choi, K.P. A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0,1), Trans. Amer. Math. Soc., Volume 330 (1992) no. 2, pp. 509-529

[3] Lust-Piquard, F. Dimension free estimates for discrete Riesz transforms on products of Abelian groups, Adv. Math., Volume 185 (2004) no. 2, pp. 289-327

[4] Meyer, P.-A. Transformations de Riesz pour les lois gaussiennes, Seminar on Probability, XVIII, Lecture Notes in Mathematics, vol. 1059, Springer, Berlin, 1984, pp. 179-193

[5] Pisier, G. Riesz transforms: a simpler analytic proof of P.-A. Meyer's inequality, Séminaire de probabilités, XXII, Lecture Notes in Mathematics, vol. 1321, Springer, Berlin, 1988, pp. 485-501

[6] Stein, E.M. Some results in harmonic analysis in Rn, for n, Bull. Amer. Math. Soc. (N.S.), Volume 9 (1983) no. 1, pp. 71-73

[7] Volberg, A.; Nazarov, F. Heat extension of the Beurling operator and estimates for its norm, St. Petersburg Math. J., Volume 15 (2004) no. 4, pp. 563-573

Cité par Sources :