On démontre que toute marche aléatoire renforcée par sommets sur avec poids de l'ordre de , pour , est récurrente. Ce résultat confirme une conjecture de Volkov pour . La conjecture reste ouverte pour .
We prove that vertex-reinforced random walk on with weight of order , for , is recurrent. This confirms a conjecture of Volkov for . The conjecture for remains open.
Accepté le :
Publié le :
@article{CRMATH_2014__352_6_521_0, author = {Chen, Jun and Kozma, Gady}, title = {Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--524}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.019/} }
TY - JOUR AU - Chen, Jun AU - Kozma, Gady TI - Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent JO - Comptes Rendus. Mathématique PY - 2014 SP - 521 EP - 524 VL - 352 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.03.019/ DO - 10.1016/j.crma.2014.03.019 LA - en ID - CRMATH_2014__352_6_521_0 ER -
%0 Journal Article %A Chen, Jun %A Kozma, Gady %T Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent %J Comptes Rendus. Mathématique %D 2014 %P 521-524 %V 352 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.03.019/ %R 10.1016/j.crma.2014.03.019 %G en %F CRMATH_2014__352_6_521_0
Chen, Jun; Kozma, Gady. Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 521-524. doi : 10.1016/j.crma.2014.03.019. http://www.numdam.org/articles/10.1016/j.crma.2014.03.019/
[1] Reinforced random walk, Probab. Theory Relat. Fields, Volume 84 (1990) no. 2, pp. 203-229 springer.com (Available at:)
[2] Gideon Amir, Itai Benjamini, Ori Gurel-Gurevich, Gady Kozma, Random walk in changing environment, unpublished manuscript, circa 2006.
[3] Vertex-reinforced random walk, Probab. Theory Relat. Fields, Volume 92 (1992) no. 1, pp. 117-136 springer.com upenn.edu/~pemantle (Available at:)
[4] Vertex-reinforced random walk on has finite range, Ann. Probab., Volume 27 (1999) no. 3, pp. 1368-1388 projecteuclid.org (Available at:)
[5] A 0–1 law for vertex-reinforced random walks on with weight of order , , Electron. Commun. Probab., Volume 17 (2012) no. 22 ejpecp.org (Available at:)
[6] Recurrence for vertex-reinforced random walks on with weak reinforcements, 2014 (Available at:) | arXiv
[7] Vertex-reinforced random walk on eventually gets stuck on five points, Ann. Probab., Volume 32 (2004) no. 3B, pp. 2650-2701 projecteuclid.org (Available at:)
[8] Phase transition in vertex-reinforced random walks on with non-linear reinforcement, J. Theor. Probab., Volume 19 (2006) no. 3, pp. 691-700 springer.com lth.se/.../s.volkov (Available at:)
Cité par Sources :