Partial differential equations
Locally periodic thin domains with varying period
[Domaines minces localement périodiques avec une période variable]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 397-403.

Nous analysons le comportement des solutions de l'équation de Laplace dans un domaine mince à frontière fortement oscillante. Les oscillations sont localement périodiques dans le sens où l'amplitude et la période ne sont pas nécessairement constantes, puisqu'elles varient en espace. Nous obtenons le problème limite homogénéisé et montrons les résultats des correcteurs. Pour atteindre notre objectif, nous étendons la méthode de l'opérateur d'éclatement à des cas localement périodiques. Les idées principales de cette extension peuvent être appliquées à d'autres cas, comme par exemple à des domaines perforés ou à des structures réticulées localement périodiques dont la période n'est pas forcément constante.

We analyze the behavior of the solutions of the Laplace equation with Neumann boundary conditions in a thin domain with a highly oscillatory behavior. The oscillations are locally periodic in the sense that both the amplitude and the period of the oscillations may not be constant and actually they vary in space. We obtain the asymptotic homogenized limit and provide some correctors. To accomplish this goal, we extend the unfolding operator method to the locally periodic case. The main ideas of this extension may be applied to other cases like perforated domains or reticulated structures, which are locally periodic with not necessarily a constant period.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.014
Arrieta, José M. 1, 2 ; Villanueva-Pesqueira, Manuel 1

1 Dept. Matemática Aplicada, Facultad Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
2 Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain
@article{CRMATH_2014__352_5_397_0,
     author = {Arrieta, Jos\'e M. and Villanueva-Pesqueira, Manuel},
     title = {Locally periodic thin domains with varying period},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {397--403},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.014/}
}
TY  - JOUR
AU  - Arrieta, José M.
AU  - Villanueva-Pesqueira, Manuel
TI  - Locally periodic thin domains with varying period
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 397
EP  - 403
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.014/
DO  - 10.1016/j.crma.2014.03.014
LA  - en
ID  - CRMATH_2014__352_5_397_0
ER  - 
%0 Journal Article
%A Arrieta, José M.
%A Villanueva-Pesqueira, Manuel
%T Locally periodic thin domains with varying period
%J Comptes Rendus. Mathématique
%D 2014
%P 397-403
%V 352
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.014/
%R 10.1016/j.crma.2014.03.014
%G en
%F CRMATH_2014__352_5_397_0
Arrieta, José M.; Villanueva-Pesqueira, Manuel. Locally periodic thin domains with varying period. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 397-403. doi : 10.1016/j.crma.2014.03.014. http://www.numdam.org/articles/10.1016/j.crma.2014.03.014/

[1] Achdou, Y.; Pironneau, O.; Valentin, F. Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 187-218

[2] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 32 (1992), pp. 1482-1518

[3] Arrieta, J.M.; Pereira, M.C. Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., Volume 96 (2011) no. 1, pp. 29-57

[4] Arrieta, J.M.; Pereira, M.C. The Neumann problem in thin domains with very highly oscillatory boundaries, J. Math. Anal. Appl., Volume 444 (2013) no. 1, pp. 86-104

[5] Arrieta, J.M.; Villanueva-Pesqueira, M. Thin domains with doubly oscillatory boundary, Math. Methods Appl. Sci., Volume 37 (2014) no. 2, pp. 158-166

[6] J.M. Arrieta, M. Villanueva-Pesqueira, Homogenization in locally periodic thin domains with varying period, in preparation.

[7] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures, North-Holland Publ. Company, 1978

[8] Bresch, D.; Milisic, V. Higher order multi-scale wall-laws, Part I: the periodic case, Quart. Appl. Math., Volume 68 (2010) no. 2, pp. 229-253

[9] Casado-Díaz, J.; Luna-Laynez, M.; Suárez-Grau, F.J. Asymptotic behavior of the Navier–Stokes system in a thin domain with Navier condition on a slightly rough boundary, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1641-1674

[10] Chupin, L. Roughness effect on Neumann boundary condition, Asymptot. Anal., Volume 78 (2012) no. 1–2, pp. 85-121

[11] Chupin, L.; Martin, S. Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 3041-3070

[12] Cioranescu, D.; Saint Jean Paulin, J. Homogenization of Reticulated Structures, Springer-Verlag, 1999

[13] Cioranescu, D.; Damlamian, A.; Griso, G. Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 99-104

[14] Cioranescu, D.; Damlamian, A.; Griso, G. The periodic unfolding method in homogenization, SIAM J. Math. Anal., Volume 40 (2008) no. 4, pp. 1585-1620

[15] Cioranescu, D.; Damlamian, A.; Donato, P.; Griso, G.; Zaki, R. The periodic unfolding method in domains with holes, SIAM J. Math. Anal., Volume 44 (2012) no. 2, pp. 718-760

[16] Dautray, R.; Lions, J.-L. Mathematical Analysis and Numerical Methods for Science and Technology, Spectral Theory and Applications, vol. 3, Springer-Verlag, 1990

[17] Gerard-Varet, D. The Navier wall law at a boundary with random roughness, Comm. Math. Phys., Volume 286 (2009) no. 1, pp. 81-110

[18] Hale, J.K.; Raugel, G. Reaction–diffusion equation on thin domains, J. Math. Pures Appl. (9), Volume 71 (1992) no. 1, pp. 33-95

[19] Jäger, W.; Mikelic, A. On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, Volume 170 (2001) no. 1, pp. 96-122

[20] Mel‘nyk, T.A.; Popov, A.V. Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness, Nonlinear Oscil., Volume 13 (2010) no. 1, pp. 57-84

[21] Raugel, G. Dynamics of partial differential equations on thin domains, Montecatini Terme, 1994 (Lecture Notes in Mathematics), Volume vol. 1609, Springer, Berlin (1995), pp. 208-315

[22] Sánchez-Palencia, É. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, 1980

Cité par Sources :