Partial differential equations/Optimal control
Global exact controllability of 1d Schrödinger equations with a polarizability term
[Contrôle exact global d'équations de Schrödinger 1d avec un terme de polarisabilité]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 425-429.

On considère une particule quantique dans un intervalle 1d, soumise à un potentiel. L'évolution de cette particule est contrôlée par un champ électrique extérieur. En prenant en compte dans le modèle le terme dit de polarisabilité (quadratique par rapport au contrôle), on prouve la contrôlabilité exacte globale dans un espace approprié pour des potentiels et des moments dipolaires arbitraires. Ce terme est intéressant à la fois d'un point de vue mathématique et physique. La preuve utilise des outils issus du cadre bilinéaire et un argument de perturbation.

We consider a quantum particle in a 1d interval submitted to a potential. The evolution of this particle is controlled using an external electric field. Taking into account the so-called polarizability term in the model (quadratic with respect to the control), we prove global exact controllability in a suitable space for arbitrary potential and arbitrary dipole moment. This term is relevant both from the mathematical and physical points of view. The proof uses tools from the bilinear setting and a perturbation argument.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.013
Morancey, Morgan 1, 2 ; Nersesyan, Vahagn 3

1 CMLS UMR 7640, École polytechnique, 91128 Palaiseau, France
2 CMLA ENS Cachan, 61, avenue du Président-Wilson, 94235 Cachan, France
3 Laboratoire de mathématiques, UMR CNRS 8100, Université de Versailles–Saint-Quentin-en-Yvelines, 78035 Versailles, France
@article{CRMATH_2014__352_5_425_0,
     author = {Morancey, Morgan and Nersesyan, Vahagn},
     title = {Global exact controllability of 1d {Schr\"odinger} equations with a polarizability term},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--429},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.013/}
}
TY  - JOUR
AU  - Morancey, Morgan
AU  - Nersesyan, Vahagn
TI  - Global exact controllability of 1d Schrödinger equations with a polarizability term
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 425
EP  - 429
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.013/
DO  - 10.1016/j.crma.2014.03.013
LA  - en
ID  - CRMATH_2014__352_5_425_0
ER  - 
%0 Journal Article
%A Morancey, Morgan
%A Nersesyan, Vahagn
%T Global exact controllability of 1d Schrödinger equations with a polarizability term
%J Comptes Rendus. Mathématique
%D 2014
%P 425-429
%V 352
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.013/
%R 10.1016/j.crma.2014.03.013
%G en
%F CRMATH_2014__352_5_425_0
Morancey, Morgan; Nersesyan, Vahagn. Global exact controllability of 1d Schrödinger equations with a polarizability term. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 425-429. doi : 10.1016/j.crma.2014.03.013. http://www.numdam.org/articles/10.1016/j.crma.2014.03.013/

[1] Beauchard, K. Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9), Volume 84 (2005) no. 7, pp. 851-956

[2] Beauchard, K.; Laurent, C. Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl. (9), Volume 94 (2010) no. 5, pp. 520-554

[3] Beauchard, K.; Nersesyan, V. Semi-global weak stabilization of bilinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 19–20, pp. 1073-1078

[4] Boussaid, N.; Caponigro, M.; Chambrion, T. Approximate controllability of the Schrödinger equation with a polarizability term, Maui, Hawaii, USA (December 2012), pp. 3024-3029

[5] Caponigro, M.; Boscain, U.; Chambrion, T.; Sigalotti, M. Control of the bilinear Schrödinger equation for fully coupling potentials, Milan, Italy (2011)

[6] Chambrion, T.; Mason, P.; Sigalotti, M.; Boscain, U. Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 329-349

[7] Coron, J.-M.; Grigoriu, A.; Lefter, C.; Turinici, G. Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling, New. J. Phys., Volume 11 (2009) no. 10, p. 105034

[8] Dion, C.M.; Keller, A.; Atabek, O.; Bandrauk, A.D. Laser-induced alignment dynamics of HCN: roles of the permanent dipole moment and the polarizability, Phys. Rev., Volume 59 (1999), p. 1382

[9] Grigoriu, A. Stability analysis of discontinuous quantum control systems with dipole and polarizability coupling, Automatica J. IFAC, Volume 48 (2012) no. 9, pp. 2229-2234

[10] Grigoriu, A.; Lefter, C.; Turinici, G. Lyapunov control of Schrödinger equation: beyond the dipole approximations, Innsbruck, Austria (2009), pp. 119-123

[11] Morancey, M. Explicit approximate controllability of the Schrödinger equation with a polarizability term, Math. Control Signals Systems, Volume 25 (2013) no. 3, pp. 407-432

[12] Morancey, M.; Nersesyan, V. Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, 2013 J. Math. Pures Appl. (9), in press, preprint | arXiv

[13] Nersesyan, V. Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 27 (2010) no. 3, pp. 901-915

[14] Nersesyan, V.; Nersisyan, H. Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures Appl., Volume 97 (2012) no. 4, pp. 295-317

[15] Turinici, G. Beyond bilinear controllability: applications to quantum control, Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., vol. 155, Birkhäuser, Basel, Switzerland, 2007, pp. 293-309

Cité par Sources :