Functional analysis
Sums of unitarily equivalent positive operators
[Sommes d'opérateurs unitairement équivalents]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 435-439.

Des conditions simples sur les opérateurs positifs A et K assurent que A s'écrit comme une série dans l'orbite unitaire de K.

Some simple conditions on positive operators A and K ensure that A can be written as a series in the unitary orbit of K.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.012
Lee, Eun-Young 1 ; Bourin, Jean-Christophe 2

1 Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
2 Laboratoire de mathématiques, Université de Franche-Comté, 25000 Besançon, France
@article{CRMATH_2014__352_5_435_0,
     author = {Lee, Eun-Young and Bourin, Jean-Christophe},
     title = {Sums of unitarily equivalent positive operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {435--439},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.012/}
}
TY  - JOUR
AU  - Lee, Eun-Young
AU  - Bourin, Jean-Christophe
TI  - Sums of unitarily equivalent positive operators
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 435
EP  - 439
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.012/
DO  - 10.1016/j.crma.2014.03.012
LA  - en
ID  - CRMATH_2014__352_5_435_0
ER  - 
%0 Journal Article
%A Lee, Eun-Young
%A Bourin, Jean-Christophe
%T Sums of unitarily equivalent positive operators
%J Comptes Rendus. Mathématique
%D 2014
%P 435-439
%V 352
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.012/
%R 10.1016/j.crma.2014.03.012
%G en
%F CRMATH_2014__352_5_435_0
Lee, Eun-Young; Bourin, Jean-Christophe. Sums of unitarily equivalent positive operators. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 435-439. doi : 10.1016/j.crma.2014.03.012. http://www.numdam.org/articles/10.1016/j.crma.2014.03.012/

[1] Bourin, J.-C.; Lee, E.-Y. Sums of Murray–von Neumann equivalent operators, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 19–20, pp. 761-764

[2] Bourin, J.-C.; Lee, E.-Y. Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102

[3] Dykema, K.; Freeman, D.; Kornelson, K.; Larson, D.; Ordower, M.; Weber, E. Ellipsoidal tight frames and projection decompositions of operators, Ill. J. Math., Volume 48 (2004), pp. 477-489

[4] Kaftal, V.; Ng, P.W.; Zhang, S. Strong sums of projections in von Neumann factors, J. Funct. Anal., Volume 257 (2009), pp. 2497-2529

Cité par Sources :