Calculus of variations
A Modica–Mortola approximation for the Steiner Problem
[Une approximation à la Modica–Mortola pour le problème de Steiner]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 451-454.

Dans cette note, nous présentons une méthode d'approximation du problème de Steiner par une famille de fonctionnelles de type Modica–Mortola, avec un terme additionnel basé sur une distance géodésique à poids, pour prendre en compte la contrainte de connexité.

In this note we present a way to approximate the Steiner Problem by a family of elliptic energies of Modica–Mortola type, with an additional term relying on a weighted geodesic distance which takes care of the connectedness constraint.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.008
Lemenant, Antoine 1 ; Santambrogio, Filippo 2

1 Université Paris-Diderot, Laboratoire Jacques-Louis-Lions, France
2 Université Paris-Sud, Laboratoire de mathématiques d'Orsay, France
@article{CRMATH_2014__352_5_451_0,
     author = {Lemenant, Antoine and Santambrogio, Filippo},
     title = {A {Modica{\textendash}Mortola} approximation for the {Steiner} {Problem}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {451--454},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.008/}
}
TY  - JOUR
AU  - Lemenant, Antoine
AU  - Santambrogio, Filippo
TI  - A Modica–Mortola approximation for the Steiner Problem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 451
EP  - 454
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.008/
DO  - 10.1016/j.crma.2014.03.008
LA  - en
ID  - CRMATH_2014__352_5_451_0
ER  - 
%0 Journal Article
%A Lemenant, Antoine
%A Santambrogio, Filippo
%T A Modica–Mortola approximation for the Steiner Problem
%J Comptes Rendus. Mathématique
%D 2014
%P 451-454
%V 352
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.008/
%R 10.1016/j.crma.2014.03.008
%G en
%F CRMATH_2014__352_5_451_0
Lemenant, Antoine; Santambrogio, Filippo. A Modica–Mortola approximation for the Steiner Problem. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 451-454. doi : 10.1016/j.crma.2014.03.008. http://www.numdam.org/articles/10.1016/j.crma.2014.03.008/

[1] Ambrosio, L.; Lemenant, A.; Royer-Carfagni, G. A variational model for plastic slip and its regularization via gamma-convergence, J. Elasticity, Volume 110 (2013) no. 2, pp. 201-235

[2] Ambrosio, L.; Tortorelli, V.M. On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), Volume 6 (1992) no. 1, pp. 105-123

[3] Benmansour, F.; Carlier, G.; Peyré, G.; Santambrogio, F. Derivatives with respect to metrics and applications: subgradient marching algorithm, Numer. Math., Volume 116 (2010) no. 3, pp. 357-381

[4] M. Bonnivard, A. Lemenant, F. Santambrogio, Approximation of length minimization problems among compact connected sets, preprint available on CVGMT.

[5] Carlier, G.; Jimenez, C.; Santambrogio, F. Optimal transportation with traffic congestion and wardrop equilibria, SIAM J. Control Optim., Volume 47 (2008), pp. 1330-1350

[6] Gilbert, E.N.; Pollak, H.O. Steiner minimal trees, SIAM J. Appl. Math., Volume 16 (1968), pp. 1-29

[7] Karp, R. Reducibility among combinatorial problems, Complexity of Computer Computations, Plenum Press, 1972, pp. 85-103

[8] Dal Maso, G.; Iurlano, F. Fracture models as Γ-limits of damage models, Comm. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1657-1686

[9] Modica, L.; Mortola, S. Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5), Volume 14 (1977) no. 3, pp. 526-529

[10] Oudet, É. Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture, Exp. Math., Volume 20 (2011) no. 3, pp. 260-270

[11] Oudet, É.; Santambrogio, F. A Modica–Mortola approximation for branched transport and applications, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 115-142

[12] Paolini, E.; Stepanov, E. Existence and regularity results for the Steiner problem, Calc. Var. Partial Differential Equations, Volume 46 (2013) no. 3, pp. 837-860

[13] Santambrogio, F. A Modica–Mortola approximation for branched transport, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 15–16, pp. 941-945

[14] Sethian, J.A. Level Set Methods and Fast Marching Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1999

Cité par Sources :

This work has been partially supported by the Agence Nationale de la Recherche, through the project ANR-12-BS01-0014-01 GEOMETRYA, and by The Gaspard Monge Program for Optimization and operations research (PGMO) via the project MACRO.