Nous présentons dans cette Note une méthode originale pour traiter la propagation de la chaleur dans un milieu fracturé. Nous considérons ici le cas de fractures perpendiculaires à l'axe du matériau, de profondeur unité, et disposées périodiquement. Nous montrons que la perturbation du flux induite par la fracture peut être redistribuée en un terme source en volume dans l'équation homogénéisée.
We develop in this Note a homogenization method to tackle the problem of a diffusion process through a cracked medium. We assume that the cracks are orthogonal to the surface of the material, where an incoming heat flux is applied. The cracks are supposed to be of depth 1, of small width, and periodically arranged. We show that the cracked surface of the domain induces a volume source term in the homogenized equation.
Accepté le :
Publié le :
@article{CRMATH_2014__352_5_405_0, author = {Blanc, Xavier and Peigney, Benjamin-\'Edouard}, title = {Homogenization of heat diffusion in a cracked medium}, journal = {Comptes Rendus. Math\'ematique}, pages = {405--409}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/} }
TY - JOUR AU - Blanc, Xavier AU - Peigney, Benjamin-Édouard TI - Homogenization of heat diffusion in a cracked medium JO - Comptes Rendus. Mathématique PY - 2014 SP - 405 EP - 409 VL - 352 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/ DO - 10.1016/j.crma.2014.03.003 LA - en ID - CRMATH_2014__352_5_405_0 ER -
%0 Journal Article %A Blanc, Xavier %A Peigney, Benjamin-Édouard %T Homogenization of heat diffusion in a cracked medium %J Comptes Rendus. Mathématique %D 2014 %P 405-409 %V 352 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/ %R 10.1016/j.crma.2014.03.003 %G en %F CRMATH_2014__352_5_405_0
Blanc, Xavier; Peigney, Benjamin-Édouard. Homogenization of heat diffusion in a cracked medium. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 405-409. doi : 10.1016/j.crma.2014.03.003. http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/
[1] Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 187-218
[2] Effective boundary condition for Stokes flow over a very rough surface, J. Differential Equations, Volume 254 (2013) no. 8, pp. 3395-3430
[3] Asymptotic Analysis of Periodic Structures, Studies in Mathematics and Its Applications, vol. 5, North-Holland Publishing Co., Amsterdam–New York, 1978
[4] X. Blanc, B. Peigney, Homogenization of heat diffusion in a cracked medium, to appear in Multiscale Model. Simul.
[5] Effective boundary condition at a rough surface starting from a slip condition, J. Differential Equations, Volume 251 (2011) no. 12, pp. 3450-3487
[6] FreeFem++ (manual), 2007 http://www.freefem.org
Cité par Sources :