Partial differential equations/Numerical analysis
Homogenization of heat diffusion in a cracked medium
[Équation de la chaleur dans un milieu fracturé]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 405-409.

Nous présentons dans cette Note une méthode originale pour traiter la propagation de la chaleur dans un milieu fracturé. Nous considérons ici le cas de fractures perpendiculaires à l'axe du matériau, de profondeur unité, et disposées périodiquement. Nous montrons que la perturbation du flux induite par la fracture peut être redistribuée en un terme source en volume dans l'équation homogénéisée.

We develop in this Note a homogenization method to tackle the problem of a diffusion process through a cracked medium. We assume that the cracks are orthogonal to the surface of the material, where an incoming heat flux is applied. The cracks are supposed to be of depth 1, of small width, and periodically arranged. We show that the cracked surface of the domain induces a volume source term in the homogenized equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.003
Blanc, Xavier 1 ; Peigney, Benjamin-Édouard 2

1 Laboratoire Jacques-Louis-Lions, université Paris-7-Denis-Diderot, bâtiment Sophie-Germain, 5, rue Thomas-Mann, 75205 Paris cedex 13, France
2 CEA-DAM Île de France, Bruyères-le-Chatel, 91297 Arpajon cedex, France
@article{CRMATH_2014__352_5_405_0,
     author = {Blanc, Xavier and Peigney, Benjamin-\'Edouard},
     title = {Homogenization of heat diffusion in a cracked medium},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {405--409},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/}
}
TY  - JOUR
AU  - Blanc, Xavier
AU  - Peigney, Benjamin-Édouard
TI  - Homogenization of heat diffusion in a cracked medium
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 405
EP  - 409
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/
DO  - 10.1016/j.crma.2014.03.003
LA  - en
ID  - CRMATH_2014__352_5_405_0
ER  - 
%0 Journal Article
%A Blanc, Xavier
%A Peigney, Benjamin-Édouard
%T Homogenization of heat diffusion in a cracked medium
%J Comptes Rendus. Mathématique
%D 2014
%P 405-409
%V 352
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/
%R 10.1016/j.crma.2014.03.003
%G en
%F CRMATH_2014__352_5_405_0
Blanc, Xavier; Peigney, Benjamin-Édouard. Homogenization of heat diffusion in a cracked medium. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 405-409. doi : 10.1016/j.crma.2014.03.003. http://www.numdam.org/articles/10.1016/j.crma.2014.03.003/

[1] Achdou, Yves; Pironneau, O.; Valentin, F. Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 187-218

[2] Amirat, Youcef; Bodart, Olivier; De Maio, Umberto; Gaudiello, Antonio Effective boundary condition for Stokes flow over a very rough surface, J. Differential Equations, Volume 254 (2013) no. 8, pp. 3395-3430

[3] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis of Periodic Structures, Studies in Mathematics and Its Applications, vol. 5, North-Holland Publishing Co., Amsterdam–New York, 1978

[4] X. Blanc, B. Peigney, Homogenization of heat diffusion in a cracked medium, to appear in Multiscale Model. Simul.

[5] Dalibard, Anne-Laure; Gérard-Varet, David Effective boundary condition at a rough surface starting from a slip condition, J. Differential Equations, Volume 251 (2011) no. 12, pp. 3450-3487

[6] Hecht, F.; Pironneau, O.; Le Hyaric, A.; Ohtsuke, K. FreeFem++ (manual), 2007 http://www.freefem.org

Cité par Sources :