Partial differential equations
A convergence result for the periodic unfolding method related to fast diffusion on manifolds
[Un résultat de convergence pour la méthode d'éclatement périodique lié à la diffusion rapide sur des variétés]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 485-490.

À l'aide de la méthode d'éclatement périodique, nous démontrons un résultat de convergence des gradients de fonctions définies sur des variétés connexes, différentiables et périodiques. Sous certaines conditions d'estimation du gradient, typiques de la diffusion rapide, nous obtenons à la limite d'homogénéisation la somme d'un gradient de la variable globale et d'un gradient de la variable locale. Un exemple illustre l'utilisation de ce résultat : pour une équation de réaction et diffusion définie sur une variété périodique, nous démontrons que l'équation homogénéisée contient un terme décrivant une diffusion globale.

Based on the periodic unfolding method in periodic homogenization, we deduce a convergence result for gradients of functions defined on connected, smooth, and periodic manifolds. Under the assumption of certain a-priori estimates of the gradient, which are typical for fast diffusion, the sum of a term involving a gradient with respect to the slow variable and one with respect to the fast variable is obtained in the homogenization limit. In addition, we show in a brief example how to apply this result and find for a reaction–diffusion equation defined on a periodic manifold that the homogenized equation contains a term describing macroscopic diffusion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.002
Graf, Isabell 1 ; Peter, Malte A. 2, 3

1 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
2 Institute of Mathematics, University of Augsburg, Augsburg, Germany
3 Augsburg Centre for Innovative Technologies, Augsburg, Germany
@article{CRMATH_2014__352_6_485_0,
     author = {Graf, Isabell and Peter, Malte A.},
     title = {A convergence result for the periodic unfolding method related to fast diffusion on manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {485--490},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.03.002/}
}
TY  - JOUR
AU  - Graf, Isabell
AU  - Peter, Malte A.
TI  - A convergence result for the periodic unfolding method related to fast diffusion on manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 485
EP  - 490
VL  - 352
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.03.002/
DO  - 10.1016/j.crma.2014.03.002
LA  - en
ID  - CRMATH_2014__352_6_485_0
ER  - 
%0 Journal Article
%A Graf, Isabell
%A Peter, Malte A.
%T A convergence result for the periodic unfolding method related to fast diffusion on manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 485-490
%V 352
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.03.002/
%R 10.1016/j.crma.2014.03.002
%G en
%F CRMATH_2014__352_6_485_0
Graf, Isabell; Peter, Malte A. A convergence result for the periodic unfolding method related to fast diffusion on manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 485-490. doi : 10.1016/j.crma.2014.03.002. http://www.numdam.org/articles/10.1016/j.crma.2014.03.002/

[1] Allaire, G.; Damlamian, A.; Hornung, U. Two-scale convergence on periodic surfaces and applications (Bourgeat, A.P.; Carasso, C.; Luckhaus, S.; Mikelić, A., eds.), Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, World Scientific, 1995, pp. 15-25

[2] Arbogast, T.; Douglas, J.; Hornung, U. Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990), pp. 823-836

[3] Cioranescu, D.; Damlamian, A.; Donato, P.; Griso, G.; Zaki, R. The periodic unfolding method in domains with holes, SIAM J. Math. Anal., Volume 44 (2012) no. 2, pp. 718-760

[4] Cioranescu, D.; Damlamian, A.; Griso, G. Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 1, pp. 99-104

[5] Cioranescu, D.; Damlamian, A.; Griso, G. The periodic unfolding method in homogenization, SIAM J. Math. Anal., Volume 40 (2008) no. 4, pp. 1585-1620

[6] Cioranescu, D.; Donato, P.; Zaki, R. The periodic unfolding method in perforated domains, Port. Math., Volume 63 (2006) no. 4, pp. 467-496

[7] Dobberschütz, S.; Böhm, M. A periodic unfolding operator on certain compact Riemannian manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 1027-1030

[8] Graf, I. Multiscale modeling and homogenization of reaction–diffusion systems involving biological surfaces, Universität Augsburg, Logos Verlag, Berlin, 2013 (PhD dissertation)

[9] Graf, I.; Peter, M. Homogenization of fast diffusion on surfaces with a two-step method and an application to T-cell signaling, Nonlinear Anal.: Real World Appl., Volume 17 (2014), pp. 344-364

[10] M. Höpker, M. Böhm, A note on the existence of extension operators for Sobolev spaces on periodic domains, preprint, submitted for publication.

[11] Li, P. Seminar on Differential Geometry, Princeton University Press, 1982

[12] Mabrouk, M.; Hassan, S. Homogenization of a composite medium with a thermal barrier, Math. Methods Appl. Sci., Volume 27 (2004), pp. 405-425

[13] Neuss-Radu, M. Some extensions of two-scale convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996), pp. 899-904

[14] Peter, M.A.; Böhm, M. Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Math. Methods Appl. Sci., Volume 31 (2008), pp. 1257-1282

Cité par Sources :