Les sommes de Weil de la forme
Weil sums of the form
Accepté le :
Publié le :
@article{CRMATH_2014__352_5_373_0, author = {Aubry, Yves and Katz, Daniel J. and Langevin, Philippe}, title = {Cyclotomie des sommes de {Weil} binomiales}, journal = {Comptes Rendus. Math\'ematique}, pages = {373--376}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.001}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.03.001/} }
TY - JOUR AU - Aubry, Yves AU - Katz, Daniel J. AU - Langevin, Philippe TI - Cyclotomie des sommes de Weil binomiales JO - Comptes Rendus. Mathématique PY - 2014 SP - 373 EP - 376 VL - 352 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.03.001/ DO - 10.1016/j.crma.2014.03.001 LA - fr ID - CRMATH_2014__352_5_373_0 ER -
%0 Journal Article %A Aubry, Yves %A Katz, Daniel J. %A Langevin, Philippe %T Cyclotomie des sommes de Weil binomiales %J Comptes Rendus. Mathématique %D 2014 %P 373-376 %V 352 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.03.001/ %R 10.1016/j.crma.2014.03.001 %G fr %F CRMATH_2014__352_5_373_0
Aubry, Yves; Katz, Daniel J.; Langevin, Philippe. Cyclotomie des sommes de Weil binomiales. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 373-376. doi : 10.1016/j.crma.2014.03.001. https://www.numdam.org/articles/10.1016/j.crma.2014.03.001/
[1] Cyclotomy of Weil sums of binomials, 2014 | arXiv
[2] Proof of a conjecture of Sarwate and Pursley regarding pairs of binary m-sequences, IEEE Trans. Inf. Theory, Volume 41 (1995) no. 4, pp. 1153-1155
[3] On a conjecture of Helleseth regarding pairs of binary m-sequences, IEEE Trans. Inf. Theory, Volume 42 (1996) no. 3, pp. 988-990
[4] Cyclic codes with few weights and Niho exponents, J. Comb. Theory, Ser. A, Volume 108 (2004) no. 2, pp. 247-259
[5] Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math., Volume 172 (1935), pp. 151-182
[6] On cyclic codes of length
[7] Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., Volume 16 (1976) no. 3, pp. 209-232
[8] Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth, J. Comb. Theory, Ser. A, Volume 119 (2012) no. 8, pp. 1644-1659
[9] Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989) no. 11, pp. 723-726
[10] Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2, C. R. Acad. Sci. Paris, Ser. I, Volume 305 (1987) no. 20, pp. 881-883
[11] Multi-valued cross-correlation function between two maximal linear recursive sequences, University of Southern California, Los Angeles, USA, 1972 (PhD thesis)
[12] Cross correlation properties of pseudorandom and related sequences, IEEE Trans. Inf. Theory, Volume 68 (1980) no. 5, pp. 593-619 (Correction dans IEEE Trans. Inf. Theory, 68, 12, 1980, pp. 1554)
Cité par Sources :