Complex analysis
The weighted log canonical threshold
[Le seuil log-canonique pondéré]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 283-288.

Dans cet article, nous montrons comment appliquer la version originelle du théorème d'extension L2 de Ohsawa et Takegoshi à la base standard d'un faisceau d'idéaux multiplicateurs associé à une fonction plurisousharmonique. Ceci nous permet de redémontrer la conjecture d'ouverture forte et d'obtenir une version effective du théorème de semi-continuité pour les seuils log-canoniques pondérés.

In this note, we show how to apply the original L2-extension theorem of Ohsawa and Takegoshi to the standard basis of a multiplier ideal sheaf associated with a plurisubharmonic function. In this way, we are able to reprove the strong openness conjecture and to obtain an effective version of the semicontinuity theorem for weighted log canonical thresholds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.02.010
Hiep, Pham Hoang 1

1 Department of Mathematics, Hanoi National University of Education, Viet Nam
@article{CRMATH_2014__352_4_283_0,
     author = {Hiep, Pham Hoang},
     title = {The weighted log canonical threshold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {283--288},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.02.010/}
}
TY  - JOUR
AU  - Hiep, Pham Hoang
TI  - The weighted log canonical threshold
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 283
EP  - 288
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.02.010/
DO  - 10.1016/j.crma.2014.02.010
LA  - en
ID  - CRMATH_2014__352_4_283_0
ER  - 
%0 Journal Article
%A Hiep, Pham Hoang
%T The weighted log canonical threshold
%J Comptes Rendus. Mathématique
%D 2014
%P 283-288
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.02.010/
%R 10.1016/j.crma.2014.02.010
%G en
%F CRMATH_2014__352_4_283_0
Hiep, Pham Hoang. The weighted log canonical threshold. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 283-288. doi : 10.1016/j.crma.2014.02.010. http://www.numdam.org/articles/10.1016/j.crma.2014.02.010/

[1] Bayer, D. The division algorithm and the Hilbert scheme, Havard University, June 1982 (Ph.D. Thesis)

[2] Berndtsson, B. The openness conjecture for plurisubharmonic functions, 2013 | arXiv

[3] Bierstone, E.; Milman, P. Relations among analytic functions I, Ann. Inst. Fourier, Volume 37 (1987), pp. 187-239

[4] Bierstone, E.; Milman, P. Uniformization of analytic spaces, J. Amer. Math. Soc., Volume 2 (1989), pp. 801-836

[5] Cao, J. Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds, 2012 | arXiv

[6] Demailly, J.-P. Monge–Ampère operators, Lelong numbers and intersection theory (Ancona, V.; Silva, A., eds.), Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993

[7] Demailly, J.-P. A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993), pp. 323-374

[8] Demailly, J.-P. Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/demailly/books.html

[9] Demailly, J.-P.; Hiep, Pham Hoang A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9 | DOI

[10] Demailly, J.-P.; Kollár, J. Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 525-556

[11] Eisenbud, D. Commutative Algebra with a View Toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer, New York, 1995

[12] Favre, C.; Jonsson, M. Valuations and multiplier ideals, J. Amer. Math. Soc., Volume 18 (2005), pp. 655-684

[13] de Fernex, T.; Ein, L.; Mustaţǎ, M. Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003), pp. 219-236

[14] de Fernex, T.; Ein, L.; Mustaţǎ, M. Shokurov's ACC Conjecture for log canonical thresholds on smooth varieties, Duke Math. J., Volume 152 (2010), pp. 93-114

[15] Galligo, A. Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier, Volume 29 (1979), pp. 107-184

[16] Guan, Q.; Zhou, X. Optimal constant problem in the L2-extension theorem, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 753-756

[17] Guan, Q.; Zhou, X. Strong openness conjecture and related problems for plurisubharmonic functions, 2014 | arXiv

[18] Hai, Le Mau; Hiep, Pham Hoang; Hung, Vu Viet The log canonical threshold of holomorphic functions, Int. J. Math., Volume 23 (2012)

[19] Hiep, Pham Hoang A comparison principle for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 441-443

[20] Jonsson, M.; Mustaţǎ, M. Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012), pp. 2145-2209

[21] Jonsson, M.; Mustaţǎ, M. An algebraic approach to the openness conjecture of Demailly and Kollár, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 119-144

[22] Kiselman, C.O. Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., Volume 60 (1994), pp. 173-197

[23] Nadel, A. Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. Math., Volume 132 (1990), pp. 549-596

[24] Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204

[25] Phong, Duong Hong; Sturm, J. On a conjecture of Demailly and Kollar, Asian J. Math., Volume 4 (2000), pp. 221-226

[26] Skoda, H. Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408

Cité par Sources :