Partial differential equations
Canard cycle transition at a slow–fast passage through a jump point
[Transition de cycles canard pour un passage lent–rapide par un point de saut]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 317-320.

On introduit des cycles canard transitoires pour les champs de vecteurs lents–rapides du plan. De tels cycles font la transition entre des « canards sans tête » et des « canards avec tête », comme par exemple dans l'équation de Van der Pol. On obtient des bornes supérieures optimales pour le nombre des orbites périodiques qui peuvent apparaître près du cycle canard transitoire, quelles que soient les conditions sur l'intégrale de divergence lente I associée, ce qui inclut le cas difficile I=0.

We introduce transitory canard cycles for slow–fast vector fields in the plane. Such cycles separate “canards without head” and “canards with head”, like for example in the Van der Pol equation. We obtain optimal upper bounds on the number of periodic orbits that can appear near the cycle under whatever condition on the related slow divergence integral I, including the challenging case I=0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.02.008
De Maesschalck, Peter 1 ; Dumortier, Freddy 1 ; Roussarie, Robert 2

1 Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
2 Institut de mathématique de Bourgogne, UMR 5584 du CNRS, Université de Bourgogne, BP 47 870, 21078 Dijon cedex, France
@article{CRMATH_2014__352_4_317_0,
     author = {De Maesschalck, Peter and Dumortier, Freddy and Roussarie, Robert},
     title = {Canard cycle transition at a slow{\textendash}fast passage through a jump point},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {317--320},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.02.008/}
}
TY  - JOUR
AU  - De Maesschalck, Peter
AU  - Dumortier, Freddy
AU  - Roussarie, Robert
TI  - Canard cycle transition at a slow–fast passage through a jump point
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 317
EP  - 320
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.02.008/
DO  - 10.1016/j.crma.2014.02.008
LA  - en
ID  - CRMATH_2014__352_4_317_0
ER  - 
%0 Journal Article
%A De Maesschalck, Peter
%A Dumortier, Freddy
%A Roussarie, Robert
%T Canard cycle transition at a slow–fast passage through a jump point
%J Comptes Rendus. Mathématique
%D 2014
%P 317-320
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.02.008/
%R 10.1016/j.crma.2014.02.008
%G en
%F CRMATH_2014__352_4_317_0
De Maesschalck, Peter; Dumortier, Freddy; Roussarie, Robert. Canard cycle transition at a slow–fast passage through a jump point. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 317-320. doi : 10.1016/j.crma.2014.02.008. http://www.numdam.org/articles/10.1016/j.crma.2014.02.008/

[1] Benoit, E. Équations différentielles: relation entrée–sortie, C. R. Acad. Sci. Paris, Ser. I, Volume 293 (1981) no. 5, pp. 293-296

[2] P. De Maesschalck, F. Dumortier, R. Roussarie, Canard Cycles from Birth to Transition, in preparation.

[3] De Maesschalck, P.; Dumortier, F.; Roussarie, R. Cyclicity of common slow–fast cycles, Indag. Math. (N.S.), Volume 22 (2011) no. 3–4, pp. 165-206

[4] De Maesschalck, P.; Dumortier, F.; Roussarie, R. Canard-cycle transition at a fast–fast passage through a jump point, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 27-30

[5] Dumortier, F. Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst., Volume 10 (2011) no. 1, pp. 65-85

[6] Dumortier, F.; Roussarie, R. Canard cycles and center manifolds, Mem. Amer. Math. Soc., Volume 121 (1996) no. 577 (x+100. With an appendix by Li Chengzhi)

[7] Dumortier, F.; Roussarie, R. Multiple canard cycles in generalized Liénard equations, J. Differential Equations, Volume 174 (2001) no. 1, pp. 1-29

[8] Krupa, M.; Szmolyan, P. Relaxation oscillation and canard explosion, J. Differential Equations, Volume 174 (2001) no. 2, pp. 312-368

Cité par Sources :