Differential geometry
A characterization of balanced manifolds
[Une caractérisation des variétés semi-kählériennes]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 345-350.

Une métrique hermitienne de forme fondamentale ω sur une variété complexe M est kählérienne si et seulement s'il existe un système de cordonnées z sur un voisinage de chaque point de M, tel que la composante linéaire de ωi,j(z) s'annule. On montre ici un critère de semi-kählérianité, à savoir qu'une métrique hermitienne de forme ω sur M est semi-kählérienne si et seulement s'il existe un système de cordonnées z sur un voisinage de chaque point de M, tel que la part linéaire de ωi,j(z) ne contienne pas zi,zj,zi¯,zj¯, et que la trace de ω soit fermée.

A Hermitian metric on a complex manifold is Kähler if and only if it approximates the Euclidean metric to order 2 at each point, in a suitable coordinate system. We prove here an analogous characterization of balanced metrics, namely, a Hermitian metric is balanced if and only if its fundamental form ω has closed trace and ωi,j(z) does not contain linear terms involving zi,zj,zi¯,zj¯, for each point, in a suitable coordinate system.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.02.004
Alessandrini, Lucia 1

1 Dipartimento di Matematica e Informatica, Università di Parma, Parma, Italy
@article{CRMATH_2014__352_4_345_0,
     author = {Alessandrini, Lucia},
     title = {A characterization of balanced manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--350},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.02.004/}
}
TY  - JOUR
AU  - Alessandrini, Lucia
TI  - A characterization of balanced manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 345
EP  - 350
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.02.004/
DO  - 10.1016/j.crma.2014.02.004
LA  - en
ID  - CRMATH_2014__352_4_345_0
ER  - 
%0 Journal Article
%A Alessandrini, Lucia
%T A characterization of balanced manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 345-350
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.02.004/
%R 10.1016/j.crma.2014.02.004
%G en
%F CRMATH_2014__352_4_345_0
Alessandrini, Lucia. A characterization of balanced manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 345-350. doi : 10.1016/j.crma.2014.02.004. http://www.numdam.org/articles/10.1016/j.crma.2014.02.004/

[1] Alessandrini, L.; Bassanelli, G. Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differ. Geom., Volume 37 (1993), pp. 95-121

[2] Alessandrini, L.; Bassanelli, G. Wedge product of positive currents and balanced manifolds, Tohoku Math. J., Volume 60 (2008), pp. 123-134

[3] Demailly, J.-P. Complex Analytic and Differential Geometry http://www.fourier.ujf_grenoble.fr/demailly/books.html (free accessible book)

[4] Griffiths, P.; Harris, J. Principles of Algebraic Geometry, John Wiley & Sons, Inc., New York, 1978

[5] Michelson, M.L. On the existence of special metrics in complex geometry, Acta Math., Volume 143 (1983), pp. 261-295

Cité par Sources :