Partial differential equations
A remark on the fractional Hardy inequality with a remainder term
[Une remarque sur l'inégalité de Hardy fractionnaire avec reste]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 299-303.

Dans cette note, nous proposons l'amélioration suivante de l'inégalité de Hardy fractionnaire :

Soient N1, 0<s<1, N>2s, et ΩRN un domaine borné. Alors, pour tout 1<q<2, il existe une constante positive CC(Ω,q,N,s) telle que, pour tout uC0(Ω),

aN,sRNRN(u(x)u(y))2|xy|N+2sdxdyΛN,sRNu2(x)|x|2sdxC(Ω,q,N,s)ΩΩ(u(x)u(y))2|xy|N+qsdxdy,
avec
aN,s=22s1πN2Γ(N+2s2)|Γ(s)|etΛN,s=22sΓ2(N+2s4)Γ2(N2s4).

We prove in this note the following sharpened fractional Hardy inequality:

Let N1, 0<s<1, N>2s, and ΩRN a bounded domain. Then for all 1<q<2, there exists a positive constant C=C(Ω,q,N,s) such that for all uC0(Ω),

aN,sRNRN(u(x)u(y))2|xy|N+2sdxdyΛN,sRNu2(x)|x|2sdxC(Ω,q,N,s)ΩΩ(u(x)u(y))2|xy|N+qsdxdy,(1)
where
aN,s=22s1πN2Γ(N+2s2)|Γ(s)|andΛN,s=22sΓ2(N+2s4)Γ2(N2s4).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.02.003
Abdellaoui, Boumediene 1 ; Peral, Ireneo 2 ; Primo, Ana 2

1 Laboratoire d'analyse nonlinéaire et mathématiques appliquées, faculté des sciences, université Abou-Bakr-Belkaïd, Tlemcen 13000, Algeria
2 Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2014__352_4_299_0,
     author = {Abdellaoui, Boumediene and Peral, Ireneo and Primo, Ana},
     title = {A remark on the fractional {Hardy} inequality with a remainder term},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {299--303},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/}
}
TY  - JOUR
AU  - Abdellaoui, Boumediene
AU  - Peral, Ireneo
AU  - Primo, Ana
TI  - A remark on the fractional Hardy inequality with a remainder term
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 299
EP  - 303
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/
DO  - 10.1016/j.crma.2014.02.003
LA  - en
ID  - CRMATH_2014__352_4_299_0
ER  - 
%0 Journal Article
%A Abdellaoui, Boumediene
%A Peral, Ireneo
%A Primo, Ana
%T A remark on the fractional Hardy inequality with a remainder term
%J Comptes Rendus. Mathématique
%D 2014
%P 299-303
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/
%R 10.1016/j.crma.2014.02.003
%G en
%F CRMATH_2014__352_4_299_0
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana. A remark on the fractional Hardy inequality with a remainder term. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 299-303. doi : 10.1016/j.crma.2014.02.003. http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/

[1] Abdellaoui, B.; Colorado, E.; Peral, I. Some improved Caffarelli–Kohn–Nirenberg inequalities, Calc. Var. Partial Differ. Equ., Volume 23 (2005), pp. 327-345

[2] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math., , published online 8 October 2013. | DOI

[3] Caffarelli, L.A.; Silvestre, L. An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1245-1260

[4] Dyda, B.; Frank, R. Fractional Hardy–Sobolev–Maz'ya inequality for domains, Stud. Math., Volume 208 (2012) no. 2, pp. 151-166

[5] Fall, M.M. Semilinear elliptic equations for the fractional Laplacian with Hardy potential (preprint) | arXiv

[6] Ferrari, F.; Verbitsky, I. Radial fractional Laplace operators and Hessian inequalities, J. Differ. Equ., Volume 253 (2012) no. 1, pp. 244-272

[7] Filippas, S.; Moschini, L.; Tertikas, A. Sharp trace Hardy–Sobolev–Maz'ya inequalities and the fractional Laplacian, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 109-161

[8] Frank, R.; Lieb, E.H.; Seiringer, R. Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 20 (2008) no. 4, pp. 925-950

[9] Frank, R.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., Volume 255 (2008), pp. 3407-3430

[10] Herbst, I.W. Spectral theory of the operator (p2+m2)1/2Ze2/r, Commun. Math. Phys., Volume 53 (1977), pp. 285-294

[11] Wang, Z.Q.; Willem, M. Caffarelli–Kohn–Nirenberg inequalities with remainder terms, J. Funct. Anal., Volume 203 (2003) no. 2, pp. 550-568

Cité par Sources :