Dans cette note, nous proposons l'amélioration suivante de l'inégalité de Hardy fractionnaire :
Soient , , , et un domaine borné. Alors, pour tout , il existe une constante positive telle que, pour tout ,
We prove in this note the following sharpened fractional Hardy inequality:
Let , , , and a bounded domain. Then for all , there exists a positive constant such that for all ,
(1) |
Accepté le :
Publié le :
@article{CRMATH_2014__352_4_299_0, author = {Abdellaoui, Boumediene and Peral, Ireneo and Primo, Ana}, title = {A remark on the fractional {Hardy} inequality with a remainder term}, journal = {Comptes Rendus. Math\'ematique}, pages = {299--303}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/} }
TY - JOUR AU - Abdellaoui, Boumediene AU - Peral, Ireneo AU - Primo, Ana TI - A remark on the fractional Hardy inequality with a remainder term JO - Comptes Rendus. Mathématique PY - 2014 SP - 299 EP - 303 VL - 352 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/ DO - 10.1016/j.crma.2014.02.003 LA - en ID - CRMATH_2014__352_4_299_0 ER -
%0 Journal Article %A Abdellaoui, Boumediene %A Peral, Ireneo %A Primo, Ana %T A remark on the fractional Hardy inequality with a remainder term %J Comptes Rendus. Mathématique %D 2014 %P 299-303 %V 352 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/ %R 10.1016/j.crma.2014.02.003 %G en %F CRMATH_2014__352_4_299_0
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana. A remark on the fractional Hardy inequality with a remainder term. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 299-303. doi : 10.1016/j.crma.2014.02.003. http://www.numdam.org/articles/10.1016/j.crma.2014.02.003/
[1] Some improved Caffarelli–Kohn–Nirenberg inequalities, Calc. Var. Partial Differ. Equ., Volume 23 (2005), pp. 327-345
[2] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math., , published online 8 October 2013. | DOI
[3] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1245-1260
[4] Fractional Hardy–Sobolev–Maz'ya inequality for domains, Stud. Math., Volume 208 (2012) no. 2, pp. 151-166
[5] Semilinear elliptic equations for the fractional Laplacian with Hardy potential (preprint) | arXiv
[6] Radial fractional Laplace operators and Hessian inequalities, J. Differ. Equ., Volume 253 (2012) no. 1, pp. 244-272
[7] Sharp trace Hardy–Sobolev–Maz'ya inequalities and the fractional Laplacian, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 109-161
[8] Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 20 (2008) no. 4, pp. 925-950
[9] Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., Volume 255 (2008), pp. 3407-3430
[10] Spectral theory of the operator , Commun. Math. Phys., Volume 53 (1977), pp. 285-294
[11] Caffarelli–Kohn–Nirenberg inequalities with remainder terms, J. Funct. Anal., Volume 203 (2003) no. 2, pp. 550-568
Cité par Sources :