Erdös et Niven ont démontré en 1946 que, pour tous entiers positifs m et d, il n'y a qu'un nombre fini d'entiers positifs n pour lesquels au moins une des fonctions symétriques élémentaires des nombres
Erdös and Niven proved in 1946 that for any positive integers m and d, there are at most finitely many integers n for which at least one of the elementary symmetric functions of
Accepté le :
Publié le :
@article{CRMATH_2014__352_4_269_0, author = {Luo, Yuanyuan and Hong, Shaofang and Qian, Guoyou and Wang, Chunlin}, title = {The elementary symmetric functions of a reciprocal polynomial sequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {269--272}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.002}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.02.002/} }
TY - JOUR AU - Luo, Yuanyuan AU - Hong, Shaofang AU - Qian, Guoyou AU - Wang, Chunlin TI - The elementary symmetric functions of a reciprocal polynomial sequence JO - Comptes Rendus. Mathématique PY - 2014 SP - 269 EP - 272 VL - 352 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.02.002/ DO - 10.1016/j.crma.2014.02.002 LA - en ID - CRMATH_2014__352_4_269_0 ER -
%0 Journal Article %A Luo, Yuanyuan %A Hong, Shaofang %A Qian, Guoyou %A Wang, Chunlin %T The elementary symmetric functions of a reciprocal polynomial sequence %J Comptes Rendus. Mathématique %D 2014 %P 269-272 %V 352 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.02.002/ %R 10.1016/j.crma.2014.02.002 %G en %F CRMATH_2014__352_4_269_0
Luo, Yuanyuan; Hong, Shaofang; Qian, Guoyou; Wang, Chunlin. The elementary symmetric functions of a reciprocal polynomial sequence. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 269-272. doi : 10.1016/j.crma.2014.02.002. https://www.numdam.org/articles/10.1016/j.crma.2014.02.002/
[1] On the elementary symmetric functions of
[2] Some properties of partial sums of the harmonic series, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 248-251
[3] p-Adic Numbers, p-Adic Analysis and Zeta Functions, Grad. Texts Math., vol. 58, Springer-Verlag, New York, 1984
[4] On the integrality of the elementary symmetric functions of
[5] The elementary symmetric functions of reciprocal arithmetic progressions | arXiv
Cité par Sources :