Complex analysis/Functional analysis
Disjoint mixing composition operators on the Hardy space in the unit ball
[Opérateurs de composition disjointement mélangeants sur l'espace de Hardy de la boule unité]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 289-294.

Nous caractérisons les propriétés de mélange disjoint et d'hypercyclicité disjointe d'une famille finie d'opérateurs de composition agissant sur l'espace de Hardy de la boule unité.

We characterize disjoint mixing and disjoint hypercyclicity of finite many composition operators acting on the Hardy space on the unit ball.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.017
Liang, Yu-Xia 1 ; Zhou, Ze-Hua 1, 2

1 Department of Mathematics, Tianjin University, Tianjin 300072, PR China
2 Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China
@article{CRMATH_2014__352_4_289_0,
     author = {Liang, Yu-Xia and Zhou, Ze-Hua},
     title = {Disjoint mixing composition operators on the {Hardy} space in the unit ball},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {289--294},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.017/}
}
TY  - JOUR
AU  - Liang, Yu-Xia
AU  - Zhou, Ze-Hua
TI  - Disjoint mixing composition operators on the Hardy space in the unit ball
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 289
EP  - 294
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.017/
DO  - 10.1016/j.crma.2014.01.017
LA  - en
ID  - CRMATH_2014__352_4_289_0
ER  - 
%0 Journal Article
%A Liang, Yu-Xia
%A Zhou, Ze-Hua
%T Disjoint mixing composition operators on the Hardy space in the unit ball
%J Comptes Rendus. Mathématique
%D 2014
%P 289-294
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.017/
%R 10.1016/j.crma.2014.01.017
%G en
%F CRMATH_2014__352_4_289_0
Liang, Yu-Xia; Zhou, Ze-Hua. Disjoint mixing composition operators on the Hardy space in the unit ball. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 289-294. doi : 10.1016/j.crma.2014.01.017. http://www.numdam.org/articles/10.1016/j.crma.2014.01.017/

[1] Bayart, F. A class of linear fractional maps of the ball and their composition operators, Adv. Math., Volume 209 (2007), pp. 649-665

[2] Bayart, F.; Matheron, E. Dynamics of Linear Operators, Cambridge University Press, 2009

[3] Bermúdez, T.; Bonilla, A.; Peris, A. On hypercyclicity and supercyclicity criteria, Bull. Austral. Math. Soc., Volume 70 (2004), pp. 45-54

[4] Bernal-González, L. Disjoint hypercyclic operators, Studia Math., Volume 182 (2007) no. 2, pp. 113-131

[5] Bès, J.; Martin, Ö. Compositional disjoint hypercyclicity equals disjoint supercyclicity, Houston J. Math., Volume 38 (2012), pp. 1149-1163

[6] Bès, J.; Martin, Ö.; Peris, A. Disjoint hypercyclic linear fractional composition operators, J. Math. Appl., Volume 381 (2011), pp. 843-856

[7] Bès, J.; Peris, A. Disjointness in hypercyclicity, J. Math. Anal. Appl., Volume 336 (2007), pp. 297-315

[8] Bès, J.; Martin, Ö.; Peris, A.; Shkarin, S. Disjoint mixing operators, J. Funct. Anal., Volume 263 (2012), pp. 1283-1322

[9] Bisi, C.; Bracci, F. Linear fractional maps of the unit ball: A geometric study, Adv. Math., Volume 167 (2002), pp. 265-287

[10] Bourdon, P.; Shapiro, J. Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., Volume 125 (1997), p. 596

[11] Chen, X.; Cao, G.; Guo, K. Inner functions and cyclic composition operators on H2(BN), J. Math. Anal. Appl., Volume 250 (2000), pp. 660-669

[12] Chen, R.; Zhou, Z. Hypercyclicity of weighted composition operators on the unit ball of CN, J. Korean Math. Soc., Volume 48 (2011) no. 5, pp. 969-984

[13] Cowen, C.C.; MacCluer, B.D. Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995

[14] Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49

[15] Godefroy, G.; Shapiro, J. Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., Volume 98 (1991), pp. 229-269

[16] Grosse-Erdmann, K.-G.; Peris Manguillot, A. Linear Chaos, Springer, New York, 2011

[17] Jiang, L.; Ouyang, C. Cyclic behavior of linear fractional composition operators in the unit ball of CN, J. Math. Anal. Appl., Volume 341 (2008), pp. 601-612

[18] Levenberg, N. Approximation in CN, Surv. Approx. Theory, Volume 92 (2006), pp. 92-140

[19] MacCluer, B.D. Iterates of holomorphic self-maps of the unit ball in CN, Michigan Math. J., Volume 30 (1983), pp. 97-106

[20] Martin, Ö. Disjoint hypercyclic and supercyclic composition operators, Bowling Green State University, 2011 (PhD thesis)

[21] Salas, H. Dual disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 374 (2011), pp. 106-117

[22] Shapiro, J. Composition Operators and Classical Function Theory, Springer-Verlag, 1993

[23] Shkarin, S. A short proof of existence of disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 367 (2010), pp. 713-715

Cité par Sources :

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276, 11301373, 11201331).