Les classes d'homotopie (à homéomorphisme près) de champs de vecteurs sans singularité sur la sphère
The homotopy class (up to homeomorphism) of nonsingular vector fields on
Accepté le :
Publié le :
@article{CRMATH_2014__352_4_351_0, author = {Yu, Bin}, title = {A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--355}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.016}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.01.016/} }
TY - JOUR AU - Yu, Bin TI - A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$ JO - Comptes Rendus. Mathématique PY - 2014 SP - 351 EP - 355 VL - 352 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.01.016/ DO - 10.1016/j.crma.2014.01.016 LA - en ID - CRMATH_2014__352_4_351_0 ER -
%0 Journal Article %A Yu, Bin %T A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$ %J Comptes Rendus. Mathématique %D 2014 %P 351-355 %V 352 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.01.016/ %R 10.1016/j.crma.2014.01.016 %G en %F CRMATH_2014__352_4_351_0
Yu, Bin. A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 351-355. doi : 10.1016/j.crma.2014.01.016. https://www.numdam.org/articles/10.1016/j.crma.2014.01.016/
[1] About homotopy classes of non-singular vector fields on the three-sphere, Qual. Theory Dyn. Syst., Volume 3 (2002) no. 2, pp. 361-376
[2] The dynamics of generic Kuperberg flows | arXiv
[3] A smooth counterexample to the Seifert conjecture, Ann. Math. (2), Volume 140 (1994) no. 3, pp. 723-732
[4] Complicated dynamics from simple topological hypotheses, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., Volume 359 (2000), pp. 1479-1496
[5] Difference index of vector fields and the enhanced Milnor number, Topology, Volume 29 (1990) no. 1, pp. 83-100
[6] Some examples of nonsingular Morse–Smale vector fields on
[7] The homotopy class of nonsingular Morse–Smale vector fields on 3-manifolds, Invent. Math., Volume 80 (1985) no. 3, pp. 435-451
[8] Depth 0 nonsingular Morse Smale flows on
- Behavior
nonsingular Morse Smale flows on , Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 1, p. 509 | DOI:10.3934/dcds.2016.36.509
Cité par 1 document. Sources : Crossref