Algebraic geometry
Nefness: Generalization to the lc case
[Nefness : Généralisation au cas lc]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 333-337.

Cette note se consacre à démontrer que la partie modulaire de la formule du fibré canonique pour une fibration qui est lc-triviale et non klt-triviale est b-semiample. Ce résultat est démontré dans [3, §8] et dans [4] en utilisant des resultats très profonds concernant les variations de structure de Hodge mixte. On présente ici une preuve qui est plus élémentaire et qui suit celle de [2, théorème 0.2].

This note is devoted to a proof of the b-nefness of the moduli part in the canonical bundle formula for an lc-trivial fibration that is lc and not klt over the generic point of the base. This result is proved in [3, §8] and [4] by using the theory of variation of mixed Hodge structure. Here we present a proof that makes use only of the theory of variation of Hodge structure and follows Ambro's proof of [2, Theorem 0.2].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.011
@article{CRMATH_2014__352_4_333_0,
     author = {Floris, Enrica},
     title = {Nefness: {Generalization} to the lc case},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--337},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/}
}
TY  - JOUR
AU  - Floris, Enrica
TI  - Nefness: Generalization to the lc case
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 333
EP  - 337
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/
DO  - 10.1016/j.crma.2014.01.011
LA  - en
ID  - CRMATH_2014__352_4_333_0
ER  - 
%0 Journal Article
%A Floris, Enrica
%T Nefness: Generalization to the lc case
%J Comptes Rendus. Mathématique
%D 2014
%P 333-337
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/
%R 10.1016/j.crma.2014.01.011
%G en
%F CRMATH_2014__352_4_333_0
Floris, Enrica. Nefness: Generalization to the lc case. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 333-337. doi : 10.1016/j.crma.2014.01.011. http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/

[1] Ambro, F. The Adjunction Conjecture and its applications, The Johns Hopkins University, 1999 (PhD thesis preprint) | arXiv

[2] Ambro, F. Shokurov's boundary property, J. Differential Geom., Volume 67 (2004), pp. 229-255

[3] Corti, A. Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, UK, 2007

[4] Fujino, O. Higher direct images of log canonical divisors, J. Differential Geom., Volume 66 (2004) no. 3, pp. 453-479

[5] Fujino, O.; Gongyo, Y. On the moduli b-divisors of lc-trivial fibrations | arXiv

[6] Kawamata, Y. Subadjunction of log canonical divisors, II, Amer. J. Math., Volume 120 (1998), pp. 893-899

[7] Kawamata, Y. Characterization of Abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276

[8] Kawamata, Y. Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., Volume 66 (1982), pp. 57-71

[9] Kollár, J. Higher direct images of dualizing sheaves II, Ann. of Math. (2), Volume 124 (1986) no. 1, pp. 171-202

[10] Viehweg, E. Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., vol. 1, 1983, pp. 329-353

Cité par Sources :