Cette note se consacre à démontrer que la partie modulaire de la formule du fibré canonique pour une fibration qui est lc-triviale et non klt-triviale est b-semiample. Ce résultat est démontré dans [3, §8] et dans [4] en utilisant des resultats très profonds concernant les variations de structure de Hodge mixte. On présente ici une preuve qui est plus élémentaire et qui suit celle de [2, théorème 0.2].
This note is devoted to a proof of the b-nefness of the moduli part in the canonical bundle formula for an lc-trivial fibration that is lc and not klt over the generic point of the base. This result is proved in [3, §8] and [4] by using the theory of variation of mixed Hodge structure. Here we present a proof that makes use only of the theory of variation of Hodge structure and follows Ambro's proof of [2, Theorem 0.2].
@article{CRMATH_2014__352_4_333_0, author = {Floris, Enrica}, title = {Nefness: {Generalization} to the lc case}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--337}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/} }
TY - JOUR AU - Floris, Enrica TI - Nefness: Generalization to the lc case JO - Comptes Rendus. Mathématique PY - 2014 SP - 333 EP - 337 VL - 352 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/ DO - 10.1016/j.crma.2014.01.011 LA - en ID - CRMATH_2014__352_4_333_0 ER -
Floris, Enrica. Nefness: Generalization to the lc case. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 333-337. doi : 10.1016/j.crma.2014.01.011. http://www.numdam.org/articles/10.1016/j.crma.2014.01.011/
[1] The Adjunction Conjecture and its applications, The Johns Hopkins University, 1999 (PhD thesis preprint) | arXiv
[2] Shokurov's boundary property, J. Differential Geom., Volume 67 (2004), pp. 229-255
[3] Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, UK, 2007
[4] Higher direct images of log canonical divisors, J. Differential Geom., Volume 66 (2004) no. 3, pp. 453-479
[5] On the moduli b-divisors of lc-trivial fibrations | arXiv
[6] Subadjunction of log canonical divisors, II, Amer. J. Math., Volume 120 (1998), pp. 893-899
[7] Characterization of Abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276
[8] Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., Volume 66 (1982), pp. 57-71
[9] Higher direct images of dualizing sheaves II, Ann. of Math. (2), Volume 124 (1986) no. 1, pp. 171-202
[10] Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., vol. 1, 1983, pp. 329-353
Cité par Sources :