Complex analysis
Coefficient estimates for certain classes of meromorphic bi-univalent functions
[Estimations des coefficients pour certaines classes de fonctions méromorphes bi-univalentes]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 277-282.

Nous définissons une nouvelle classe de fonctions méromorphes bi-univalentes et utilisons des développements en polynômes de Faber pour déterminer des bornes sur les coefficients de ces fonctions. Nos résultats généralisent et améliorent certains résultats antérieurement connus. Une fonction méromorphe est dite ici être bi-univalente dans un domaine donné Δ si la fonction et sa fonction réciproques y sont toutes deux univalentes.

We define a new class of meromorphic bi-univalent functions and use the Faber polynomial expansions to determine the coefficient bounds for such functions. Our results generalize and/or improve some of the previously known results. A meromorphic function is said to be bi-univalent in a given domain Δ if both the function and its inverse map are univalent there.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.010
Hamidi, Samaneh G. 1 ; Janani, T. 2 ; Murugusundaramoorthy, G. 2 ; Jahangiri, Jay M. 3

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
2 School of Advanced Sciences, VIT University, Vellore, India
3 Department of Mathematical Sciences, Kent State University, Burton, OH, USA
@article{CRMATH_2014__352_4_277_0,
     author = {Hamidi, Samaneh G. and Janani, T. and Murugusundaramoorthy, G. and Jahangiri, Jay M.},
     title = {Coefficient estimates for certain classes of meromorphic bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {277--282},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.010/}
}
TY  - JOUR
AU  - Hamidi, Samaneh G.
AU  - Janani, T.
AU  - Murugusundaramoorthy, G.
AU  - Jahangiri, Jay M.
TI  - Coefficient estimates for certain classes of meromorphic bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 277
EP  - 282
VL  - 352
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.010/
DO  - 10.1016/j.crma.2014.01.010
LA  - en
ID  - CRMATH_2014__352_4_277_0
ER  - 
%0 Journal Article
%A Hamidi, Samaneh G.
%A Janani, T.
%A Murugusundaramoorthy, G.
%A Jahangiri, Jay M.
%T Coefficient estimates for certain classes of meromorphic bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2014
%P 277-282
%V 352
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.010/
%R 10.1016/j.crma.2014.01.010
%G en
%F CRMATH_2014__352_4_277_0
Hamidi, Samaneh G.; Janani, T.; Murugusundaramoorthy, G.; Jahangiri, Jay M. Coefficient estimates for certain classes of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 277-282. doi : 10.1016/j.crma.2014.01.010. http://www.numdam.org/articles/10.1016/j.crma.2014.01.010/

[1] Airault, H.; Bouali, A. Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222

[2] Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367

[3] Duren, P.L. Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc., Volume 28 (1971), pp. 169-172

[4] Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013) (Article ID 498159, 4 p)

[5] Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352

[6] Kapoor, G.P.; Mishra, A.K. Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., Volume 329 (2007) no. 2, pp. 922-934

[7] Kubota, Y. Coefficients of meromorphic univalent functions, Kodai Math. Semin. Rep., Volume 28 (1977) no. 2–3, pp. 253-261

[8] Schiffer, M. Sur un probléme d'extremum de la représentation conforme, Bull. Soc. Math. France, Volume 66 (1938), pp. 48-55

[9] Schiffer, M. Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc., Volume 54 (1948), pp. 503-517

[10] Schober, G. Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., Volume 67 (1977) no. 1, pp. 111-116

[11] Springer, G. The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., Volume 70 (1951), pp. 421-450

[12] Srivastava, H.M.; Mishra, A.K.; Kund, S.N. Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamer. Math. J., Volume 21 (2011) no. 4, pp. 105-123

[13] Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)

Cité par Sources :