Nous proposons une nouvelle variante de q-analogue pour les coefficients binomiaux généralisés appelés coefficients bisnomiaux. Elle est basée sur les suites q-Fibonacci proposées par Cigler.
A new q-analogue of bisnomial coefficients is proposed according to the generalized q-Fibonacci sequence suggested by Cigler's approach.
Accepté le :
Publié le :
@article{CRMATH_2014__352_3_167_0, author = {Belbachir, Hac\`ene and Benmezai, Athmane}, title = {A \protect\emph{q}-analogue for bi\protect\textsuperscript{\protect\emph{s}}nomial coefficients and generalized {Fibonacci} sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--171}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.009/} }
TY - JOUR AU - Belbachir, Hacène AU - Benmezai, Athmane TI - A q-analogue for bisnomial coefficients and generalized Fibonacci sequences JO - Comptes Rendus. Mathématique PY - 2014 SP - 167 EP - 171 VL - 352 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.01.009/ DO - 10.1016/j.crma.2014.01.009 LA - en ID - CRMATH_2014__352_3_167_0 ER -
%0 Journal Article %A Belbachir, Hacène %A Benmezai, Athmane %T A q-analogue for bisnomial coefficients and generalized Fibonacci sequences %J Comptes Rendus. Mathématique %D 2014 %P 167-171 %V 352 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.01.009/ %R 10.1016/j.crma.2014.01.009 %G en %F CRMATH_2014__352_3_167_0
Belbachir, Hacène; Benmezai, Athmane. A q-analogue for bisnomial coefficients and generalized Fibonacci sequences. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 167-171. doi : 10.1016/j.crma.2014.01.009. http://www.numdam.org/articles/10.1016/j.crma.2014.01.009/
[1] Lattice gas generalization of the hard hexagon model III q-trinomials coefficients, J. Stat. Phys., Volume 47 (1987), pp. 297-330
[2] Determining the mode for convolution power of discrete uniform distribution, Probab. Eng. Inf. Sci., Volume 25 (2011) no. 4, pp. 469-475
[3] Linear recurent sequences and powers of a square matrix, Integers, Volume 6 (2006), p. A12
[4] Expansion of Fibonacci and Lucas polynomials: An answer to Prodinger's question, J. Integer Seq., Volume 15 (2012) (Article 12.7.6., 5 pp)
[5] An alternative approach to Cigler's q-Lucas polynomials, J. Appl. Math. Comput., Volume 226 (2014), pp. 691-698
[6] Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Ann. Math. Inform., Volume 35 (2008), pp. 21-30
[7] A note on Pascal T-triangles, Multinomial coefficients and Pascal pyramids, Fibonacci Q., Volume 24 (1986), pp. 140-144
[8] A new class of q-Fibonacci polynomials, Electron. J. Comb., Volume 10 (2003) (Article R19)
[9] Generating functions of central values of generalized Pascal triangles, Fibonacci Q., Volume 17 (1979), pp. 58-67
Cité par Sources :