Algebraic geometry/Homological algebra
A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
[Un cas de conjecture de Hodge infinitésimale via un théorème de Hochschild–Kostant–Rosenberg pro]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 173-177.

En suivant des idées de Bloch, Esnault et Kerz, nous établissons la partie formelle de la conjecture de Hodge variationnelle pour les schémas propres et lisses sur Kt, où K est une extension algébrique de Q. L'outil principal est un théorème de Hochschild–Kostant–Rosenberg pro pour l'homologie de Hochschild.

Following ideas of Bloch, Esnault, and Kerz, we establish the deformational part of Grothendieck's variational Hodge conjecture for proper, smooth schemes over Kt, where K is an algebraic extension of Q. The main tool is a pro Hochschild–Kostant–Rosenberg theorem for Hochschild homology.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.008
Morrow, Matthew 1

1 Hausdorff Center for Mathematics, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2014__352_3_173_0,
     author = {Morrow, Matthew},
     title = {A case of the deformational {Hodge} conjecture via a pro {Hochschild{\textendash}Kostant{\textendash}Rosenberg} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {173--177},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/}
}
TY  - JOUR
AU  - Morrow, Matthew
TI  - A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 173
EP  - 177
VL  - 352
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/
DO  - 10.1016/j.crma.2014.01.008
LA  - en
ID  - CRMATH_2014__352_3_173_0
ER  - 
%0 Journal Article
%A Morrow, Matthew
%T A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
%J Comptes Rendus. Mathématique
%D 2014
%P 173-177
%V 352
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/
%R 10.1016/j.crma.2014.01.008
%G en
%F CRMATH_2014__352_3_173_0
Morrow, Matthew. A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 173-177. doi : 10.1016/j.crma.2014.01.008. http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/

[1] Beilinson, A. Relative continuous K-theory and cyclic homology, 2013 | arXiv

[2] Bloch, S. Semi-regularity and de Rham cohomology, Invent. Math., Volume 17 (1972), pp. 51-66

[3] Bloch, S.; Esnault, H.; Kerz, M. p-adic deformation of algebraic cycle classes, Invent. Math. (2013) | DOI

[4] Bloch, S.; Esnault, H.; Kerz, M. Deformation of algebraic cycle classes in characteristic zero, 2013 | arXiv

[5] Cortiñas, G.; Haesemeyer, C.; Weibel, C.A. Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann., Volume 344 (2009) no. 4, pp. 891-922

[6] Goodwillie, T.G. Relative algebraic K-theory and cyclic homology, Ann. of Math. (2), Volume 124 (1986) no. 2, pp. 347-402

[7] Grothendieck, A. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math., Volume 11 (1961), p. 167

[8] Krishna, A. An Artin–Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom., Volume 19 (2010) no. 3, pp. 555-598

[9] Loday, J.-L. Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1992 (Appendix E by María O. Ronco)

[10] M. Morrow, Pro unitality and pro excision in algebraic K-theory and cyclic homology, preprint.

[11] Weibel, C. Le caractère de Chern en homologie cyclique périodique, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993) no. 9, pp. 867-871

[12] Weibel, C. The Hodge filtration and cyclic homology, K-Theory, Volume 12 (1997) no. 2, pp. 145-164

[13] Weibel, C.A. An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994

Cité par Sources :