En suivant des idées de Bloch, Esnault et Kerz, nous établissons la partie formelle de la conjecture de Hodge variationnelle pour les schémas propres et lisses sur , où K est une extension algébrique de . L'outil principal est un théorème de Hochschild–Kostant–Rosenberg pro pour l'homologie de Hochschild.
Following ideas of Bloch, Esnault, and Kerz, we establish the deformational part of Grothendieck's variational Hodge conjecture for proper, smooth schemes over , where K is an algebraic extension of . The main tool is a pro Hochschild–Kostant–Rosenberg theorem for Hochschild homology.
Accepté le :
Publié le :
@article{CRMATH_2014__352_3_173_0, author = {Morrow, Matthew}, title = {A case of the deformational {Hodge} conjecture via a pro {Hochschild{\textendash}Kostant{\textendash}Rosenberg} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {173--177}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/} }
TY - JOUR AU - Morrow, Matthew TI - A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem JO - Comptes Rendus. Mathématique PY - 2014 SP - 173 EP - 177 VL - 352 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/ DO - 10.1016/j.crma.2014.01.008 LA - en ID - CRMATH_2014__352_3_173_0 ER -
%0 Journal Article %A Morrow, Matthew %T A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem %J Comptes Rendus. Mathématique %D 2014 %P 173-177 %V 352 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/ %R 10.1016/j.crma.2014.01.008 %G en %F CRMATH_2014__352_3_173_0
Morrow, Matthew. A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 173-177. doi : 10.1016/j.crma.2014.01.008. http://www.numdam.org/articles/10.1016/j.crma.2014.01.008/
[1] Relative continuous K-theory and cyclic homology, 2013 | arXiv
[2] Semi-regularity and de Rham cohomology, Invent. Math., Volume 17 (1972), pp. 51-66
[3] p-adic deformation of algebraic cycle classes, Invent. Math. (2013) | DOI
[4] Deformation of algebraic cycle classes in characteristic zero, 2013 | arXiv
[5] Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann., Volume 344 (2009) no. 4, pp. 891-922
[6] Relative algebraic K-theory and cyclic homology, Ann. of Math. (2), Volume 124 (1986) no. 2, pp. 347-402
[7] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math., Volume 11 (1961), p. 167
[8] An Artin–Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom., Volume 19 (2010) no. 3, pp. 555-598
[9] Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1992 (Appendix E by María O. Ronco)
[10] M. Morrow, Pro unitality and pro excision in algebraic K-theory and cyclic homology, preprint.
[11] Le caractère de Chern en homologie cyclique périodique, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993) no. 9, pp. 867-871
[12] The Hodge filtration and cyclic homology, K-Theory, Volume 12 (1997) no. 2, pp. 145-164
[13] An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994
Cité par Sources :