Partial differential equations/Mathematical problems in mechanics
On the Hamiltonian structure of the planar steady water-wave problem with vorticity
[Sur la structure hamiltonienne du problème des ondes de surface planes stationnaires avec vorticité]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 205-211.

Nous considérons la formulation de la fonction du courant dans le problème hydrodynamique décrivant les ondes de surface rotationnelles stationnaires, avec ou sans tension superficielle. Dans les deux cas, nous présentons une formulation lagrangienne naturelle, à partir de laquelle (différentes) formulations hamiltoniennes sont dérivées à l'aide de la théorie de la dualité, dans l'esprit de la transformée de Legendre–Fenchel. La démarche est systématique et clarifie une approche ad hoc récente de Kozlov et Kuznetsov [7].

We consider the stream-function formulation of the hydrodynamic problem for steady rotational water waves both with and without surface tension. A natural Lagrangian formulation is presented from which (different) Hamiltonian formulations for the two cases are derived by duality theory in the spirit of the Legendre–Fenchel transform. The treatment is systematic and clarifies a recent ad hoc approach by Kozlov and Kuznetsov [7].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.006
Groves, Mark D. 1, 2 ; Stylianou, Athanasios 1

1 FR 6.1 - Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
2 Department of Mathematical Sciences, Loughborough University, Loughborough, Leics, LE11 3TU, UK
@article{CRMATH_2014__352_3_205_0,
     author = {Groves, Mark D. and Stylianou, Athanasios},
     title = {On the {Hamiltonian} structure of the planar steady water-wave problem with vorticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {205--211},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.006/}
}
TY  - JOUR
AU  - Groves, Mark D.
AU  - Stylianou, Athanasios
TI  - On the Hamiltonian structure of the planar steady water-wave problem with vorticity
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 205
EP  - 211
VL  - 352
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.006/
DO  - 10.1016/j.crma.2014.01.006
LA  - en
ID  - CRMATH_2014__352_3_205_0
ER  - 
%0 Journal Article
%A Groves, Mark D.
%A Stylianou, Athanasios
%T On the Hamiltonian structure of the planar steady water-wave problem with vorticity
%J Comptes Rendus. Mathématique
%D 2014
%P 205-211
%V 352
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.006/
%R 10.1016/j.crma.2014.01.006
%G en
%F CRMATH_2014__352_3_205_0
Groves, Mark D.; Stylianou, Athanasios. On the Hamiltonian structure of the planar steady water-wave problem with vorticity. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 205-211. doi : 10.1016/j.crma.2014.01.006. http://www.numdam.org/articles/10.1016/j.crma.2014.01.006/

[1] Baesens, C.; MacKay, R.S. Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes' family, J. Fluid Mech., Volume 241 (1992), pp. 333-347

[2] Benjamin, T.B. Verification of the Benjamin–Lighthill conjecture about steady water waves, J. Fluid Mech., Volume 295 (1995), pp. 337-356

[3] Groves, M.D. A new Hamiltonian formulation of the steady water-wave problem (Mielke, A.; Kircässner, K., eds.), Structure and Dynamics of Nonlinear Waves in Fluids, World Scientific, Singapore, 1995, pp. 259-267

[4] Groves, M.D.; Toland, J.F. On variational formulations for steady water waves, Arch. Ration. Mech. Anal., Volume 137 (1997), pp. 203-226

[5] Groves, M.D.; Wahlén, E. Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity, SIAM J. Math. Anal., Volume 39 (2007), pp. 932-964

[6] Groves, M.D.; Wahlén, E. Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity, Physica D, Volume 237 (2008), pp. 1530-1538

[7] Kozlov, V.; Kuznetsov, N. Steady water waves with vorticity: spatial Hamiltonian structure, J. Fluid Mech., Volume 733 (2013), p. R1

[8] Mielke, A. Hamiltonian and Lagrangian Flows on Center Manifolds, Springer-Verlag, Berlin, 1991

[9] Varvaruca, E.; Weiss, G. The Stokes conjecture for waves with vorticity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012), pp. 861-885

Cité par Sources :