Harmonic analysis
Uniform bounds of prolate spheroidal wave functions and eigenvalues decay
[Bornes uniformes des fonctions d'ondes sphéroidales et décroissance des valeurs propres]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 229-234.

Les fonctions d'ondes sphéroidales (PSWF) forment un ensemble de fonctions spéciales aux propriétés remarquables. Ces fonctions ψn,c sont à la fois les fonctions propres d'un opérateur différentiel Lc de type Sturm–Liouville sur [1,1] et de l'opérateur intégral Qc de noyau sin(c(xy))π(xy). Nous donnons de nouvelles bornes pour les valeurs ψn,c(0), ψn,c(0) et ψn,c(1), ce qui nous permet d'obtenir des estimations des normes Lp des PSWF ainsi que des valeurs propres des opérateurs Lc et Qc. Nous donnons en particulier une borne inférieure presque critique des valeurs propres de l'opérateur Qc.

The prolate spheroidal wave functions (PSWFs) form a set of special functions with remarkable properties. They are defined on [1,1] as the bounded eigenfunctions ψn,c of a Sturm–Liouville differential operator Lc as well as the eigenfunctions of the linear integral operator Qc with kernel sin(c(xy))π(xy). We give new bounds for the values ψn,c(0), ψn,c(0) and ψn,c(1), which allow us to obtain estimates for the Lp norms of the PSWFs and for eigenvalues of Lc and Qc. We get in particular an almost sharp exponential lower decay rate of the eigenvalues of Qc.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.004
Bonami, Aline 1 ; Karoui, Abderrazek 2

1 MAPMO–UMR 7349, CNRS–Université d'Orléans, 45067 Orléans, France
2 University of Carthage, Department of Mathematics, Faculty of Sciences of Bizerte, Jarzouna, 7021, Tunisia
@article{CRMATH_2014__352_3_229_0,
     author = {Bonami, Aline and Karoui, Abderrazek},
     title = {Uniform bounds of prolate spheroidal wave functions and eigenvalues decay},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--234},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/}
}
TY  - JOUR
AU  - Bonami, Aline
AU  - Karoui, Abderrazek
TI  - Uniform bounds of prolate spheroidal wave functions and eigenvalues decay
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 229
EP  - 234
VL  - 352
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/
DO  - 10.1016/j.crma.2014.01.004
LA  - en
ID  - CRMATH_2014__352_3_229_0
ER  - 
%0 Journal Article
%A Bonami, Aline
%A Karoui, Abderrazek
%T Uniform bounds of prolate spheroidal wave functions and eigenvalues decay
%J Comptes Rendus. Mathématique
%D 2014
%P 229-234
%V 352
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/
%R 10.1016/j.crma.2014.01.004
%G en
%F CRMATH_2014__352_3_229_0
Bonami, Aline; Karoui, Abderrazek. Uniform bounds of prolate spheroidal wave functions and eigenvalues decay. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 229-234. doi : 10.1016/j.crma.2014.01.004. http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/

[1] A. Bonami, A. Karoui, Uniform estimates of the prolate spheroidal wave functions, preprint, 2013.

[2] Boyd, J.P. Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms, J. Comput. Phys., Volume 199 (2004), pp. 688-716

[3] Chen, Q.; Gottlieb, D.; Hesthaven, J.S. Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs, SIAM J. Numer. Anal., Volume 43 (2005) no. 5, pp. 1912-1933

[4] Gosse, L. Compressed sensing with preconditioning for sparse recovery with subsampled matrices of Slepian prolate functions, Ann. Univ. Ferrara, Sez. VII: Sci. Mat., Volume 59 (2013), pp. 81-116

[5] Landau, H.J.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—III. The dimension of space of essentially time- and band-limited signals, Bell Syst. Tech. J., Volume 41 (1962), pp. 1295-1336

[6] Li, L.W.; Kang, X.K.; Leong, M.S. Spheroidal Wave Functions in Electromagnetic Theory, Wiley–Interscience, 2001

[7] Osipov, A. Certain inequalities involving prolate spheroidal wave functions and associated quantities, Appl. Comput. Harmon. Anal., Volume 35 (2013), pp. 359-393

[8] Slepian, D.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell Syst. Tech. J., Volume 40 (1961), pp. 43-64

[9] Szegö, G. Orthogonal Polynomials, Colloquium Publications, vol. XXIII, American Mathematical Society, Providence, RI, USA, 1975

[10] Wang, L.L. Analysis of spectral approximations using prolate spheroidal wave functions, Math. Comput., Volume 79 (2010), pp. 807-827

[11] Widom, H. Asymptotic behavior of the eigenvalues of certain integral equations. II, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 215-229

[12] Xiao, H.; Rokhlin, V.; Yarvin, N. Prolate spheroidal wave functions, quadrature and interpolation, Inverse Probl., Volume 17 (2001), pp. 805-838

Cité par Sources :

This work was supported in part by the ANR grant “AHPI” ANR-07-BLAN-0247-01, the French–Tunisian CMCU 10G 1503 and the DGRST Research Grant 05 UR 15-02.