Les fonctions d'ondes sphéroidales (PSWF) forment un ensemble de fonctions spéciales aux propriétés remarquables. Ces fonctions sont à la fois les fonctions propres d'un opérateur différentiel de type Sturm–Liouville sur et de l'opérateur intégral de noyau . Nous donnons de nouvelles bornes pour les valeurs , et , ce qui nous permet d'obtenir des estimations des normes des PSWF ainsi que des valeurs propres des opérateurs et . Nous donnons en particulier une borne inférieure presque critique des valeurs propres de l'opérateur .
The prolate spheroidal wave functions (PSWFs) form a set of special functions with remarkable properties. They are defined on as the bounded eigenfunctions of a Sturm–Liouville differential operator as well as the eigenfunctions of the linear integral operator with kernel . We give new bounds for the values , and , which allow us to obtain estimates for the norms of the PSWFs and for eigenvalues of and . We get in particular an almost sharp exponential lower decay rate of the eigenvalues of .
Accepté le :
Publié le :
@article{CRMATH_2014__352_3_229_0, author = {Bonami, Aline and Karoui, Abderrazek}, title = {Uniform bounds of prolate spheroidal wave functions and eigenvalues decay}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--234}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/} }
TY - JOUR AU - Bonami, Aline AU - Karoui, Abderrazek TI - Uniform bounds of prolate spheroidal wave functions and eigenvalues decay JO - Comptes Rendus. Mathématique PY - 2014 SP - 229 EP - 234 VL - 352 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/ DO - 10.1016/j.crma.2014.01.004 LA - en ID - CRMATH_2014__352_3_229_0 ER -
%0 Journal Article %A Bonami, Aline %A Karoui, Abderrazek %T Uniform bounds of prolate spheroidal wave functions and eigenvalues decay %J Comptes Rendus. Mathématique %D 2014 %P 229-234 %V 352 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/ %R 10.1016/j.crma.2014.01.004 %G en %F CRMATH_2014__352_3_229_0
Bonami, Aline; Karoui, Abderrazek. Uniform bounds of prolate spheroidal wave functions and eigenvalues decay. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 229-234. doi : 10.1016/j.crma.2014.01.004. http://www.numdam.org/articles/10.1016/j.crma.2014.01.004/
[1] A. Bonami, A. Karoui, Uniform estimates of the prolate spheroidal wave functions, preprint, 2013.
[2] Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms, J. Comput. Phys., Volume 199 (2004), pp. 688-716
[3] Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs, SIAM J. Numer. Anal., Volume 43 (2005) no. 5, pp. 1912-1933
[4] Compressed sensing with preconditioning for sparse recovery with subsampled matrices of Slepian prolate functions, Ann. Univ. Ferrara, Sez. VII: Sci. Mat., Volume 59 (2013), pp. 81-116
[5] Prolate spheroidal wave functions, Fourier analysis and uncertainty—III. The dimension of space of essentially time- and band-limited signals, Bell Syst. Tech. J., Volume 41 (1962), pp. 1295-1336
[6] Spheroidal Wave Functions in Electromagnetic Theory, Wiley–Interscience, 2001
[7] Certain inequalities involving prolate spheroidal wave functions and associated quantities, Appl. Comput. Harmon. Anal., Volume 35 (2013), pp. 359-393
[8] Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell Syst. Tech. J., Volume 40 (1961), pp. 43-64
[9] Orthogonal Polynomials, Colloquium Publications, vol. XXIII, American Mathematical Society, Providence, RI, USA, 1975
[10] Analysis of spectral approximations using prolate spheroidal wave functions, Math. Comput., Volume 79 (2010), pp. 807-827
[11] Asymptotic behavior of the eigenvalues of certain integral equations. II, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 215-229
[12] Prolate spheroidal wave functions, quadrature and interpolation, Inverse Probl., Volume 17 (2001), pp. 805-838
Cité par Sources :
☆ This work was supported in part by the ANR grant “AHPI” ANR-07-BLAN-0247-01, the French–Tunisian CMCU 10G 1503 and the DGRST Research Grant 05 UR 15-02.