Lie algebras/Algebraic geometry
Remarks on level-one conformal blocks divisors
[Remarques sur les diviseurs associés aux blocs conformes de niveau un]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 179-182.

Nous montrons que les diviseurs des blocs conformes de type Br et Cr en niveau un sont des sommes effectives de diviseurs de bord de M¯0,n. Nous démontrons également que le diviseur des blocs conformes de type Br en niveau 1, et avec poids (ω1,,ω1), croît linéairement avec le niveau.

We show that conformal blocks divisors of type Br and Dr at level one are effective sums of boundary divisors of M¯0,n. We also prove that the conformal blocks divisor of type Br at level one with weights (ω1,,ω1) scales linearly with the level.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.003
Mukhopadhyay, Swarnava 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA
@article{CRMATH_2014__352_3_179_0,
     author = {Mukhopadhyay, Swarnava},
     title = {Remarks on level-one conformal blocks divisors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {179--182},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.003/}
}
TY  - JOUR
AU  - Mukhopadhyay, Swarnava
TI  - Remarks on level-one conformal blocks divisors
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 179
EP  - 182
VL  - 352
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.01.003/
DO  - 10.1016/j.crma.2014.01.003
LA  - en
ID  - CRMATH_2014__352_3_179_0
ER  - 
%0 Journal Article
%A Mukhopadhyay, Swarnava
%T Remarks on level-one conformal blocks divisors
%J Comptes Rendus. Mathématique
%D 2014
%P 179-182
%V 352
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.01.003/
%R 10.1016/j.crma.2014.01.003
%G en
%F CRMATH_2014__352_3_179_0
Mukhopadhyay, Swarnava. Remarks on level-one conformal blocks divisors. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 179-182. doi : 10.1016/j.crma.2014.01.003. http://www.numdam.org/articles/10.1016/j.crma.2014.01.003/

[1] Belkale, P.; Gibney, A.; Mukhopadhyay, S. Quantum cohomology and conformal blocks on M¯0,n | arXiv

[2] Fakhruddin, N. Chern classes of conformal blocks, Contemp. Math., Volume 564 (2012), pp. 145-176

[3] Fedorchuk, M. New Nef divisors on M¯0,n | arXiv

[4] Fuchs, J.; Schweigert, C. The action of outer automorphisms on bundles of chiral blocks, Commun. Math. Phys., Volume 206 (1999) no. 3, pp. 691-736

[5] Keel, S.; McKernan, J. Contractible extremal rays on M¯0,n | arXiv

[6] Mukhopadhyay, S. Rank-level duality and conformal block divisors | arXiv

[7] Sorger, C. La formule de Verlinde, Astérisque, Volume 237 (1996), pp. 87-114 ([Exp. No. 794, 3])

Cité par Sources :