Nous présentons une étude par diffusion inverse de l'équation (différentiée) d'Ostrovsky–Vakhnenko :
We present an inverse scattering transform approach for the (differentiated) Ostrovsky–Vakhnenko equation:
Accepté le :
Publié le :
@article{CRMATH_2014__352_3_189_0, author = {Boutet de Monvel, Anne and Shepelsky, Dmitry}, title = {The {Ostrovsky{\textendash}Vakhnenko} equation: {A} {Riemann{\textendash}Hilbert} approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {189--195}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.01.001/} }
TY - JOUR AU - Boutet de Monvel, Anne AU - Shepelsky, Dmitry TI - The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach JO - Comptes Rendus. Mathématique PY - 2014 SP - 189 EP - 195 VL - 352 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.01.001/ DO - 10.1016/j.crma.2014.01.001 LA - en ID - CRMATH_2014__352_3_189_0 ER -
%0 Journal Article %A Boutet de Monvel, Anne %A Shepelsky, Dmitry %T The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach %J Comptes Rendus. Mathématique %D 2014 %P 189-195 %V 352 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.01.001/ %R 10.1016/j.crma.2014.01.001 %G en %F CRMATH_2014__352_3_189_0
Boutet de Monvel, Anne; Shepelsky, Dmitry. The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 189-195. doi : 10.1016/j.crma.2014.01.001. http://www.numdam.org/articles/10.1016/j.crma.2014.01.001/
[1] Long-time asymptotics of the Camassa–Holm equation on the line, Contemporary Mathematics, Volume 458 (2008), pp. 99-116
[2] A Riemann–Hilbert approach for the Degasperis–Procesi equation, Nonlinearity, Volume 26 (2013) no. 7, pp. 2081-2107
[3] The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach (preprint) | arXiv
[4] Long-time asymptotics for the Camassa–Holm equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1559-1588
[5] Painlevé-type asymptotics for the Camassa–Holm equation, SIAM J. Math. Anal., Volume 42 (2010) no. 4, pp. 1854-1873
[6] The short-wave model for the Camassa–Holm equation: a Riemann–Hilbert approach, Inverse Probl., Volume 27 (2011), p. 105006
[7] Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves), Eur. J. Appl. Math., Volume 16 (2005) no. 1, pp. 65-81
[8] Five regimes of the quasi-cnoidal, steadily translating waves of the rotation-modified Korteweg–de Vries (“Ostrovsky”) equation, Wave Motion, Volume 35 (2002) no. 2, pp. 141-155
[9] Hamiltonian structures for the Ostrovsky–Vakhnenko equation, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 56-62
[10] Asymptotic integrability, Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, USA, 1999, pp. 23-37
[11] A steepest descent method for oscillatory Riemann–Hilbert problem. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295-368
[12] Numerical solutions of some nonlinear dispersive wave equations (Allgower, E.; Georg, K., eds.), Computational Solution of Nonlinear Systems of Equations, Lectures in Applied Mathematics, vol. 26, The American Mathematical Society, 1990, pp. 301-316
[13] Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations, Phys. Lett. A, Volume 359 (2006) no. 5, pp. 451-457
[14] The N-loop soliton solution of the Vakhnenko equation, Nonlinearity, Volume 12 (1999), pp. 1427-1437
[15] Nonlinear internal waves in a rotation ocean, Oceanology, Volume 18 (1978), pp. 181-191
[16] The stability of solutions of Vakhnenko equation, J. Phys. A, Math. Gen., Volume 26 (1993), pp. 6469-6475
[17] On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons, Chaos Solitons Fractals, Volume 28 (2006), pp. 193-204
[18] Solitons in a nonlinear model medium, J. Phys. A, Math. Gen., Volume 25 (1992), pp. 4181-4187
[19] High frequency soliton-like waves in a relaxing medium, J. Math. Phys., Volume 40 (1999), pp. 2011-2020
[20] The two loop soliton of the Vakhnenko equation, Nonlinearity, Volume 11 (1998), pp. 1457-1464
[21] The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos Solitons Fractals, Volume 13 (2002), pp. 1819-1826
[22] The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method, Chaos Solitons Fractals, Volume 45 (2012), pp. 846-852
[23] N-soliton solutions for the Vakhnenko equation and its generalized forms, Phys. Scr., Volume 82 (2010), p. 065006
Cité par Sources :