Harmonic analysis
On estimates for the Fourier transform in the space L2(Rn)
Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 235-240.

We obtain new inequalities for the Fourier transform in the space L2(Rn), using a generalized spherical mean operator for proving two estimates in certain classes of functions characterized by a generalized continuity modulus.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.12.016
Daher, Radouan 1 ; El Hamma, Mohamed 1

1 Department of Mathematics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
@article{CRMATH_2014__352_3_235_0,
     author = {Daher, Radouan and El Hamma, Mohamed},
     title = {On estimates for the {Fourier} transform in the space $ {L}^{2}({\mathbb{R}}^{n})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {235--240},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.12.016/}
}
TY  - JOUR
AU  - Daher, Radouan
AU  - El Hamma, Mohamed
TI  - On estimates for the Fourier transform in the space $ {L}^{2}({\mathbb{R}}^{n})$
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 235
EP  - 240
VL  - 352
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.12.016/
DO  - 10.1016/j.crma.2013.12.016
LA  - en
ID  - CRMATH_2014__352_3_235_0
ER  - 
%0 Journal Article
%A Daher, Radouan
%A El Hamma, Mohamed
%T On estimates for the Fourier transform in the space $ {L}^{2}({\mathbb{R}}^{n})$
%J Comptes Rendus. Mathématique
%D 2014
%P 235-240
%V 352
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.12.016/
%R 10.1016/j.crma.2013.12.016
%G en
%F CRMATH_2014__352_3_235_0
Daher, Radouan; El Hamma, Mohamed. On estimates for the Fourier transform in the space $ {L}^{2}({\mathbb{R}}^{n})$. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 235-240. doi : 10.1016/j.crma.2013.12.016. http://www.numdam.org/articles/10.1016/j.crma.2013.12.016/

[1] Abilov, V.A.; Abilova, F.V. Approximation of functions by Fourier–Bessel sums, Izv. Vysš. Učebn. Zaved., Mat., Volume 8 (2001), pp. 3-9

[2] Abilov, V.A.; Abilova, M.V.; Kerimov, M.K. Some remarks concerning the Fourier transform in the space L2(Rn), Comput. Math. Math. Phys., Volume 48 (2008) no. 12, pp. 2113-2120

[3] Bray, W.O.; Pinsky, M.A. Growth properties of the Fourier transforms, Filomat, Volume 26 (2012) no. 4, pp. 755-760

[4] Bray, W.O.; Pinsky, M.A. Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal., Volume 255 (2008), pp. 2265-2285

[5] Gioev, D. Moduli of continuity and average decay of Fourier transform: Two sided estimates, Contemp. Math., Volume 458 (2008), pp. 377-392

[6] Nikol'skii, S.M. Approximation of Functions of Several Variables and Embedding Theorems, Nauka, Moscow, 1996 (in Russian)

[7] Platonov, S.S. The Fourier transform of functions satisfying the Lipschitz condition on rank one symmetric spaces, Sib. Math. J., Volume 45 (2005) no. 6, pp. 1108-1118

[8] Titchmarsh, E.C. Introduction of the Theory of Fourier Integrals, Oxford University Press, 1937

Cité par Sources :