Une série entière qui converge sur le disque unité
A power series that converges on the unit disc
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_99_0, author = {Gardiner, Stephen J. and Khavinson, Dmitry}, title = {Boundary behaviour of universal {Taylor} series}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--103}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.008}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.12.008/} }
TY - JOUR AU - Gardiner, Stephen J. AU - Khavinson, Dmitry TI - Boundary behaviour of universal Taylor series JO - Comptes Rendus. Mathématique PY - 2014 SP - 99 EP - 103 VL - 352 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.12.008/ DO - 10.1016/j.crma.2013.12.008 LA - en ID - CRMATH_2014__352_2_99_0 ER -
%0 Journal Article %A Gardiner, Stephen J. %A Khavinson, Dmitry %T Boundary behaviour of universal Taylor series %J Comptes Rendus. Mathématique %D 2014 %P 99-103 %V 352 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.12.008/ %R 10.1016/j.crma.2013.12.008 %G en %F CRMATH_2014__352_2_99_0
Gardiner, Stephen J.; Khavinson, Dmitry. Boundary behaviour of universal Taylor series. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 99-103. doi : 10.1016/j.crma.2013.12.008. https://www.numdam.org/articles/10.1016/j.crma.2013.12.008/
[1] An extension of Schwarzʼs lemma, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 359-364
[2] Boundary behavior of universal Taylor series and their derivatives, Constr. Approx., Volume 24 (2006), pp. 1-15
[3] Classical Potential Theory, Springer, London, 2001
[4] Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Complut., Volume 19 (2006), pp. 235-247
[5] Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463
[6] Universal Taylor series with maximal cluster sets, Rev. Mat. Iberoam., Volume 25 (2009), pp. 757-780
[7] On the radial behavior of universal Taylor series, Monatshefte Math., Volume 145 (2005), pp. 11-17
[8] On the range of universal functions, Bull. Lond. Math. Soc., Volume 32 (2000), pp. 458-464
[9] On the existence of a largest subharmonic minorant of a given function, Ark. Mat., Volume 3 (1957), pp. 429-440
[10] Boundary behaviour of functions which possess universal Taylor series, Bull. Lond. Math. Soc., Volume 45 (2013), pp. 191-199
[11] Universal Taylor series, conformal mappings and boundary behaviour, Ann. Inst. Fourier, Volume 63 (2013) (in press)
[12] Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006), pp. 287-293
[13] Universal polynomial expansions of harmonic functions, Potential Anal., Volume 38 (2013), pp. 985-1000
[14] On the growth of universal functions, J. Anal. Math., Volume 82 (2000), pp. 1-20
[15] Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176
[16] Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math., Volume 73 (1997), pp. 187-202
[17] Universal overconvergence and Ostrowski-gaps, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 597-606
[18] Universal Taylor series, Ann. Inst. Fourier, Volume 46 (1996), pp. 1293-1306
[19] An extension of the notion of universal Taylor series, Nicosia, 1997 (Ser. Approx. Decompos.), Volume vol. 11, World Sci. Publ., River Edge, NJ (1999), pp. 421-430
[20] Sur les minorantes sousharmoniques dʼune fonction donnée, 9e$ {9}^{\mathrm{e}}$ Congr. des mathématiques scandinaves, 1939, pp. 309-319
Cité par Sources :
☆ The first author was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and the second author by NSF grant DMS 0855597.