Dans cette note, nous présentons un théorème dʼextension
In this note, we establish an
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_137_0, author = {Guan, Qi'an and Zhou, Xiangyu}, title = {An $ {L}^{2}$ extension theorem with optimal estimate}, journal = {Comptes Rendus. Math\'ematique}, pages = {137--141}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.007}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.12.007/} }
TY - JOUR AU - Guan, Qiʼan AU - Zhou, Xiangyu TI - An $ {L}^{2}$ extension theorem with optimal estimate JO - Comptes Rendus. Mathématique PY - 2014 SP - 137 EP - 141 VL - 352 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.12.007/ DO - 10.1016/j.crma.2013.12.007 LA - en ID - CRMATH_2014__352_2_137_0 ER -
%0 Journal Article %A Guan, Qiʼan %A Zhou, Xiangyu %T An $ {L}^{2}$ extension theorem with optimal estimate %J Comptes Rendus. Mathématique %D 2014 %P 137-141 %V 352 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.12.007/ %R 10.1016/j.crma.2013.12.007 %G en %F CRMATH_2014__352_2_137_0
Guan, Qiʼan; Zhou, Xiangyu. An $ {L}^{2}$ extension theorem with optimal estimate. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 137-141. doi : 10.1016/j.crma.2013.12.007. https://www.numdam.org/articles/10.1016/j.crma.2013.12.007/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier, Volume 46 (1996) no. 4, pp. 1083-1094
[2] Integral formulas and the Ohsawa–Takegoshi extension theorem, Sci. China Ser. A, Volume 48 (2005) no. Suppl., pp. 61-73
[3] On the Ohsawa–Takegoshi extension theorem, Univ. Iag. Acta Math., Volume 50 (2012), pp. 53-61
[4] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013), pp. 149-158
[5] On the Ohsawa–Takegoshi–Manivel
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[7] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[8] Riemann Surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, Berlin, 1980
[9] Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978
[10] Optimal constant problem in the
[11] Generalized
[12] Q.A. Guan, X.Y. Zhou, Optimal constant in
[13] Q.A. Guan, X.Y. Zhou, A solution of an
[14] On the Ohsawa–Takegoshi
[15] Un théorème de prolongement
[16] On the extension of
[17] On the extension of
[18] On the extension of
[19] Erratum to: “On the extension of
[20] On the extension of
[21] Capacity Functions, Die Grundlehren der mathematischen Wissenschaften, vol. 149, Springer-Verlag New York Inc., New York, 1969
[22] Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, NJ, 1954 (x+451 p)
[23] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, World Scientific, Hayama, 1996, pp. 577-592
[24] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277
[25] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
[26] On the Lu Qi-keng conjecture, Proc. Am. Math. Soc., Volume 59 (1976) no. 2, pp. 222-224
[27] Topics related to reproducing kernels, theta functions and the Suita conjecture (Japanese), Kyoto, 1998 (Su-rikaisekikenkyu-sho Ko-kyu-roku), Volume vol. 1067 (1998), pp. 39-47
[28] Exactness of multiplicative Bergman kernels, unpublished paper, Fifth World Congress of Nonlinear Analysts, Hyatt Grand Cypress Hotel, Orlando, USA, 2008
[29]
[30] On the Ohsawa–Takegoshi
Cité par Sources :