Functional analysis
Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
[Les symboles verticaux, opérateurs de Toeplitz sur les espaces pondérés de Bergman sur le demi-plan supérieur et fonctions à oscillation très lente]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 129-132.

En étendant le résultat récent de Herrera Yañez, Maximenko et Vasilevski, nous allons proposer une nouvelle étape dans lʼanalyse structurelle des algèbres générées par les opérateurs de Toeplitz agissant sur les espaces pondérés de Bergman sur le demi-plan supérieur. Nous allons montrer que lʼensemble des fonctions « spectrales » correspondant aux opérateurs de Toeplitz à symboles bornés verticaux est dense dans la C-algèbre des fonctions à oscillation très lente sur la demi-droite positive.

Extending a recent result of Herrera Yañez, Maximenko and Vasilevski, we provide a further step in the structural analysis of algebras generated by Toeplitz operators on weighted Bergman spaces over the upper half-plane. We show that the set of “spectral” functions corresponding to Toeplitz operators generated by bounded vertical symbols is dense in the C-algebra of very slowly oscillating functions on the positive half-line.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.12.004
Herrera Yañez, Crispin 1 ; Hutník, Ondrej 2 ; Maximenko, Egor A. 3

1 Departamento de Matemáticas, CINVESTAV, Apartado Postal 14-740, 07000, D.F. México, Mexico
2 Institute of Mathematics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
3 Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07730, D.F. México, Mexico
@article{CRMATH_2014__352_2_129_0,
     author = {Herrera Ya\~nez, Crispin and Hutn{\'\i}k, Ondrej and Maximenko, Egor A.},
     title = {Vertical symbols, {Toeplitz} operators on weighted {Bergman} spaces over the upper half-plane and very slowly oscillating functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--132},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2013.12.004/}
}
TY  - JOUR
AU  - Herrera Yañez, Crispin
AU  - Hutník, Ondrej
AU  - Maximenko, Egor A.
TI  - Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 129
EP  - 132
VL  - 352
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2013.12.004/
DO  - 10.1016/j.crma.2013.12.004
LA  - en
ID  - CRMATH_2014__352_2_129_0
ER  - 
%0 Journal Article
%A Herrera Yañez, Crispin
%A Hutník, Ondrej
%A Maximenko, Egor A.
%T Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
%J Comptes Rendus. Mathématique
%D 2014
%P 129-132
%V 352
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.12.004/
%R 10.1016/j.crma.2013.12.004
%G en
%F CRMATH_2014__352_2_129_0
Herrera Yañez, Crispin; Hutník, Ondrej; Maximenko, Egor A. Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 129-132. doi : 10.1016/j.crma.2013.12.004. https://www.numdam.org/articles/10.1016/j.crma.2013.12.004/

[1] Grudsky, S.; Karapetyants, A.; Vasilevski, N. Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case, J. Oper. Theory, Volume 52 (2004), pp. 185-204

[2] Herrera Yañez, C.; Maximenko, E.A.; Vasilevski, N.L. Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions, Integral Equ. Oper. Theory, Volume 77 (2013), pp. 149-166

[3] Hutník, O.; Hutníková, M. Toeplitz operators on poly-analytic spaces via time-scale analysis, Oper. Matrices (2013) (in press)

[4] Suárez, D. The eigenvalues of limits of radial Toeplitz operators, Bull. Lond. Math. Soc., Volume 40 (2008), pp. 631-641

[5] Vasilevski, N.L. On Bergman–Toeplitz operators with commutative symbol algebras, Integral Equ. Oper. Theory, Volume 34 (1999), pp. 107-126

[6] Vasilevski, N.L. Commutative Algebras of Toeplitz Operators on the Bergman Space, Operator Theory: Advances and Applications, vol. 185, Birkhäuser, Basel, 2008

  • Barrera-Reyes, Julio A.; Quiroga-Barranco, Raúl The Heisenberg Group Action on the Siegel Domain and the Structure of Bergman Spaces, Integral Equations and Operator Theory, Volume 96 (2024) no. 3 | DOI:10.1007/s00020-024-02776-5
  • Bais, Shubham R.; Venku Naidu, D. Quasi-radial operators on the Fock space and C* -algebras of entire functions, Linear and Multilinear Algebra (2024), p. 1 | DOI:10.1080/03081087.2024.2430981
  • Bais, Shubham R.; Venku Naidu, D. A Note on C-Algebra of Toeplitz Operators with L-Invariant Symbols, Complex Analysis and Operator Theory, Volume 17 (2023) no. 6 | DOI:10.1007/s11785-023-01400-5
  • Bais, Shubham R.; Venku Naidu, D.; Mohan, Pinlodi Integral representation of vertical operators on the Bergman space over the upper half-plane, Comptes Rendus. Mathématique, Volume 361 (2023) no. G10, p. 1593 | DOI:10.5802/crmath.477
  • Esmeral, Kevin; Feichtinger, Hans G.; Hutník, Ondrej; Maximenko, Egor A. Approximately invertible elements in non-unital normed algebras, Journal of Mathematical Analysis and Applications, Volume 523 (2023) no. 1, p. 126986 | DOI:10.1016/j.jmaa.2022.126986
  • Herrera-Yañez, Crispin; Maximenko, Egor A.; Ramos-Vazquez, Gerardo Translation-invariant Operators in Reproducing Kernel Hilbert Spaces, Integral Equations and Operator Theory, Volume 94 (2022) no. 3 | DOI:10.1007/s00020-022-02705-4
  • Hernández-Eliseo, Yessica; Ramírez-Ortega, Josué; Hernández-Zamora, Francisco G.; Gheondea, Aurelian Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/8855599
  • Sánchez-Nungaray, Armando; Vasilevski, Nikolai Algebras of Toeplitz Operator on the Three-Dimensional Siegel Domain, Integral Equations and Operator Theory, Volume 90 (2018) no. 4 | DOI:10.1007/s00020-018-2477-z
  • Loaiza, Maribel; Lozano, Carmen On Toeplitz operators on the pluriharmonic Bergman space on the Siegel domain, Boletín de la Sociedad Matemática Mexicana, Volume 22 (2016) no. 2, p. 583 | DOI:10.1007/s40590-016-0122-x
  • Esmeral, Kevin; Maximenko, Egor A. Radial Toeplitz Operators on the Fock Space and Square-Root-Slowly Oscillating Sequences, Complex Analysis and Operator Theory, Volume 10 (2016) no. 7, p. 1655 | DOI:10.1007/s11785-016-0557-0
  • Hutník, Ondrej; Maximenko, Egor A.; Mišková, Anna Toeplitz Localization Operators: Spectral Functions Density, Complex Analysis and Operator Theory, Volume 10 (2016) no. 8, p. 1757 | DOI:10.1007/s11785-016-0564-1
  • Herrera Yañez, Crispin; Vasilevski, Nikolai; Maximenko, Egor A. Radial Toeplitz Operators Revisited: Discretization of the Vertical Case, Integral Equations and Operator Theory, Volume 83 (2015) no. 1, p. 49 | DOI:10.1007/s00020-014-2213-2
  • Esmeral, Kevin; Maximenko, Egor A.; Vasilevski, Nikolai C*-Algebra Generated by Angular Toeplitz Operators on the Weighted Bergman Spaces Over the Upper Half-Plane, Integral Equations and Operator Theory, Volume 83 (2015) no. 3, p. 413 | DOI:10.1007/s00020-015-2243-4

Cité par 13 documents. Sources : Crossref