[Vitesse de propagation finie et infinie pour des équations du milieu poreux avec une pression fractionnaire]
Nous étudions une équation du milieu poreux avec une pression potentielle fractionnaire : , , pour , et . Le problème se pose pour , et . La donnée initiale est supposée bornée avec support compact ou décroissance rapide à lʼinfini. Lorsque le paramètre m est variable, on obtient deux comportements différents comme suit : si , le problème a une vitesse de propagation infinie, alors que pour , elle a une vitesse de propagation finie. On compare le résultat avec les comportements dʼautres modèles de diffusion non linéaire, qui sont très différents.
We study a porous medium equation with fractional potential pressure:
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_123_0, author = {Stan, Diana and del Teso, F\'elix and V\'azquez, Juan Luis}, title = {Finite and infinite speed of propagation for porous medium equations with fractional pressure}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--128}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.12.003/} }
TY - JOUR AU - Stan, Diana AU - del Teso, Félix AU - Vázquez, Juan Luis TI - Finite and infinite speed of propagation for porous medium equations with fractional pressure JO - Comptes Rendus. Mathématique PY - 2014 SP - 123 EP - 128 VL - 352 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.12.003/ DO - 10.1016/j.crma.2013.12.003 LA - en ID - CRMATH_2014__352_2_123_0 ER -
%0 Journal Article %A Stan, Diana %A del Teso, Félix %A Vázquez, Juan Luis %T Finite and infinite speed of propagation for porous medium equations with fractional pressure %J Comptes Rendus. Mathématique %D 2014 %P 123-128 %V 352 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.12.003/ %R 10.1016/j.crma.2013.12.003 %G en %F CRMATH_2014__352_2_123_0
Stan, Diana; del Teso, Félix; Vázquez, Juan Luis. Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 123-128. doi : 10.1016/j.crma.2013.12.003. http://www.numdam.org/articles/10.1016/j.crma.2013.12.003/
[1] Barenblatt profiles for a nonlocal porous medium equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 11–12, pp. 641-645
[2] Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, 2013 | arXiv
[3] Nonlinear diffusion of dislocation density and self-similar solutions, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 145-168
[4] Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 537-565
[5] Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011) no. 4, pp. 1393-1404
[6] Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., Volume 15 (2013) no. 5, pp. 1701-1746
[7] Front propagation in Fisher–KPP equations with fractional diffusion, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722
[8] Userʼs guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67
[9] A fractional porous medium equation, Adv. Math., Volume 226 (2011) no. 2, pp. 1378-1409
[10] A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012), pp. 1242-1284 | arXiv
[11] Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., vol. 64, American Mathematical Society, Providence, RI, 1999, pp. 107-152
[12] Dislocation group dynamics III. Similarity solutions of the continuum approximation, Philos. Mag., Volume 26 (1972) no. 1, pp. 65-72
[13] Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, in preparation.
[14] Homogenization of first-order equations with (u/e)-periodic Hamiltonians. II. Application to dislocations dynamics, Commun. Partial Differ. Equ., Volume 33 (2008) no. 1–3, pp. 479-516
[15] A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, Nonlinear Differ. Equ. Appl., Volume 13 (2006), pp. 137-165
[16] The Fisher–KPP equation with nonlinear fractional diffusion, 2013 (to appear in SIAM J. Math. Anal) | arXiv
[17] D. Stan, F. del Teso, J.L. Vázquez, Finite speed of propagation for degenerate parabolic equations with fractional pressure, in preparation.
[18] Finite difference method for a fractional porous medium equation (Calcolo, December 2013) | arXiv
[19] Finite difference method for a general fractional porous medium equation, 2013 | arXiv
[20] Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (2013) (in press) | arXiv
[21] Nonlinear diffusion with fractional Laplacian operators (Holden, H.; Karlsen, K.H., eds.), Nonlinear Partial Differential Equations: The Abel Symposium 2010, Springer, 2012, pp. 271-298
Cité par Sources :