Probability theory/Mathematical physics
Convergence of Ising interfaces to Schrammʼs SLE curves
[Convergence des interfaces dʼIsing vers les courbes SLE introduites par Schramm]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 157-161.

Cet article explique comment combiner certains résultats antérieurs des différents auteurs afin de montrer la convergence forte des interfaces du modèle dʼIsing critique planaire et de sa représentation FK vers les courbes SLE(3) et SLE(16/3) introduites par Schramm.

We show how to combine our earlier results to deduce strong convergence of the interfaces in the planar critical Ising model and its random-cluster representation to Schrammʼs SLE curves with parameters κ=3 and κ=16/3, respectively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.12.002
Chelkak, Dmitry 1, 2 ; Duminil-Copin, Hugo 3 ; Hongler, Clément 4 ; Kemppainen, Antti 5 ; Smirnov, Stanislav 1, 3

1 Chebyshev Laboratory, Department of Mathematics and Mechanics, St. Petersburg State University, Russian Federation
2 St. Petersburg Department of Steklov Mathematical Institute (PDMI RAS), Russian Federation
3 Section de Mathématiques, Université de Genève, Switzerland
4 Department of Mathematics, Columbia University, United States
5 Department of Mathematics and Statistics, University of Helsinki, Finland
@article{CRMATH_2014__352_2_157_0,
     author = {Chelkak, Dmitry and Duminil-Copin, Hugo and Hongler, Cl\'ement and Kemppainen, Antti and Smirnov, Stanislav},
     title = {Convergence of {Ising} interfaces to {Schramm's} {SLE} curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {157--161},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.12.002/}
}
TY  - JOUR
AU  - Chelkak, Dmitry
AU  - Duminil-Copin, Hugo
AU  - Hongler, Clément
AU  - Kemppainen, Antti
AU  - Smirnov, Stanislav
TI  - Convergence of Ising interfaces to Schrammʼs SLE curves
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 157
EP  - 161
VL  - 352
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.12.002/
DO  - 10.1016/j.crma.2013.12.002
LA  - en
ID  - CRMATH_2014__352_2_157_0
ER  - 
%0 Journal Article
%A Chelkak, Dmitry
%A Duminil-Copin, Hugo
%A Hongler, Clément
%A Kemppainen, Antti
%A Smirnov, Stanislav
%T Convergence of Ising interfaces to Schrammʼs SLE curves
%J Comptes Rendus. Mathématique
%D 2014
%P 157-161
%V 352
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.12.002/
%R 10.1016/j.crma.2013.12.002
%G en
%F CRMATH_2014__352_2_157_0
Chelkak, Dmitry; Duminil-Copin, Hugo; Hongler, Clément; Kemppainen, Antti; Smirnov, Stanislav. Convergence of Ising interfaces to Schrammʼs SLE curves. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 157-161. doi : 10.1016/j.crma.2013.12.002. http://www.numdam.org/articles/10.1016/j.crma.2013.12.002/

[1] Aizenman, M.; Burchard, A. Hölder regularity and dimension bounds for random curves, Duke Math. J., Volume 99 (1999) no. 3, pp. 419-453

[2] Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys., Volume 34 (1984) no. 5–6, pp. 763-774

[3] Chelkak, D. Robust discrete complex analysis: a toolbox, 2012 (Preprint) | arXiv

[4] D. Chelkak, H. Duminil-Copin, Clément Hongler, Crossing probabilities in topological rectangles for the critical planar FK Ising model, Preprint, , 2013. | arXiv

[5] Chelkak, D.; Hongler, C.; Izyurov, K. Conformal invariance of spin correlations in the planar Ising model, 2012 (Preprint) | arXiv

[6] Chelkak, D.; Izyurov, K. Holomorphic spinor observables in the critical Ising model, Commun. Math. Phys., Volume 322 (2013) no. 2, pp. 303-332

[7] Chelkak, D.; Smirnov, S. Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., Volume 189 (2012) no. 3, pp. 515-580

[8] Duminil-Copin, H.; Hongler, C.; Nolin, P. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., Volume 64 (2011) no. 9, pp. 1165-1198

[9] Duminil-Copin, H.; Smirnov, S. Conformal invariance of lattice models, Probability and Statistical Physics in Two and More Dimensions, Clay Math. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 2012, pp. 213-276

[10] Hongler, C. Conformal invariance of Ising model correlations, 2010 (PhD thesis)

[11] Hongler, C.; Smirnov, S. The energy density in the planar Ising model, Acta. Math., Volume 211 (2013) no. 2, pp. 191-225

[12] Kemppainen, A.; Smirnov, S. Random curves, scaling limits and Loewner evolutions, 2012 (Preprint) | arXiv

[13] Lawler, G.F. Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005

[14] Lawler, G.F.; Schramm, O.; Werner, W. Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., Volume 32 (2004) no. 1B, pp. 939-995

[15] Pommerenke, C. Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 299, Springer-Verlag, Berlin, 1992

[16] Schramm, O. Scaling limits of loop-erased random walks and uniform spanning trees, Isr. J. Math., Volume 118 (2000), pp. 221-288

[17] Smirnov, S. Towards conformal invariance of 2D lattice models, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zurich, 2006, pp. 1421-1451

[18] Smirnov, S. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math., Volume 172 (2010) no. 2, pp. 1435-1467

Cité par Sources :