Cet article classifie les surfaces K3 de Knutsen dont toutes les sections hyperplanes sont irréductibles et réduites. Comme application, on obtient des familles infinies de surfaces K3 de nombre de Picard 2 dont les sections hyperplanes générales sont des courbes générales au sens de la théorie de Brill–Noether.
This article classifies Knutsen K3 surfaces all of whose hyperplane sections are irreducible and reduced. As an application, this gives infinite families of K3 surfaces of Picard number two whose general hyperplane sections are Brill–Noether general curves.
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_133_0, author = {Arap, Maxim and Marshburn, Nicholas}, title = {Brill{\textendash}Noether general curves on {Knutsen} {K3} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--135}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.11.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.020/} }
TY - JOUR AU - Arap, Maxim AU - Marshburn, Nicholas TI - Brill–Noether general curves on Knutsen K3 surfaces JO - Comptes Rendus. Mathématique PY - 2014 SP - 133 EP - 135 VL - 352 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.11.020/ DO - 10.1016/j.crma.2013.11.020 LA - en ID - CRMATH_2014__352_2_133_0 ER -
%0 Journal Article %A Arap, Maxim %A Marshburn, Nicholas %T Brill–Noether general curves on Knutsen K3 surfaces %J Comptes Rendus. Mathématique %D 2014 %P 133-135 %V 352 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.11.020/ %R 10.1016/j.crma.2013.11.020 %G en %F CRMATH_2014__352_2_133_0
Arap, Maxim; Marshburn, Nicholas. Brill–Noether general curves on Knutsen K3 surfaces. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 133-135. doi : 10.1016/j.crma.2013.11.020. http://www.numdam.org/articles/10.1016/j.crma.2013.11.020/
[1] On the existence of certain weak Fano threefolds of Picard number two | arXiv
[2] Smooth curves on projective K3 surfaces, Math. Scand., Volume 90 (2002), pp. 215-231
[3] Smooth, isolated curves in families of Calabi–Yau threefolds in homogeneous spaces, J. Korean Math. Soc., Volume 50 (2013) no. 5, pp. 1033-1050
[4] Brill–Noether–Petri without degenerations, J. Differ. Geom., Volume 23 (1986) no. 3, pp. 299-307
[5] New development of theory of Fano 3-folds: vector bundle method and moduli problem, Sūgaku, Volume 47 (1995) no. 2, pp. 125-144 (translation in: Sūgaku Expo., 15, 2, 2002, pp. 125-150)
Cité par Sources :