Nous donnons une classification complète des opérateurs dʼentrelacement (opérateurs de brisure de symétrie) entre les représentations des séries principales sphériques de
We give a complete classification of intertwining operators (breaking symmetry operators) between spherical principal series representations of
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_89_0, author = {Kobayashi, Toshiyuki and Speh, Birgit}, title = {Intertwining operators and the restriction of representations of rank-one orthogonal groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--94}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.11.018}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.11.018/} }
TY - JOUR AU - Kobayashi, Toshiyuki AU - Speh, Birgit TI - Intertwining operators and the restriction of representations of rank-one orthogonal groups JO - Comptes Rendus. Mathématique PY - 2014 SP - 89 EP - 94 VL - 352 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.11.018/ DO - 10.1016/j.crma.2013.11.018 LA - en ID - CRMATH_2014__352_2_89_0 ER -
%0 Journal Article %A Kobayashi, Toshiyuki %A Speh, Birgit %T Intertwining operators and the restriction of representations of rank-one orthogonal groups %J Comptes Rendus. Mathématique %D 2014 %P 89-94 %V 352 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.11.018/ %R 10.1016/j.crma.2013.11.018 %G en %F CRMATH_2014__352_2_89_0
Kobayashi, Toshiyuki; Speh, Birgit. Intertwining operators and the restriction of representations of rank-one orthogonal groups. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 89-94. doi : 10.1016/j.crma.2013.11.018. https://www.numdam.org/articles/10.1016/j.crma.2013.11.018/
[1] On the decomposition of a representations of
[2] Families of Conformally Covariant Differential Operators, Q-curvature and Holography, Progress in Math., vol. 275, Birkhäuser, 2009 (xiv+488 p)
[3] Discrete decomposability of the restriction of
[4] F-method for constructing equivariant differential operators, Contemp. Math., vol. 598, Amer. Math. Soc., 2013, pp. 141-148
[5] F-method for symmetry breaking operators, Differ. Geom. Appl. (2013) (available at) | arXiv | DOI
[6] Finite multiplicity theorems for induction and restriction, Adv. Math., Volume 248 (2013), pp. 921-944 (available at) | arXiv
[7] Trilinear forms on
[8] Multiplicity one theorems: the Archimedean case, Ann. Math., Volume 175 (2012), pp. 23-44
[9] Real Reductive Groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, 1992 (xiv+454 p)
Cité par Sources :