Nous donnons une classification complète des opérateurs dʼentrelacement (opérateurs de brisure de symétrie) entre les représentations des séries principales sphériques de et de ainsi que des formules explicites pour les noyaux de Schwartz de ces opérateurs. Par la suite, nous déterminons les opérateurs de brisure de symétrie entre les facteurs irréductibles des séries de composition correspondantes.
We give a complete classification of intertwining operators (breaking symmetry operators) between spherical principal series representations of and together with explicit formulae of the distribution kernels. Further we use this to determine the breaking symmetry operators between their irreducible composition factors.
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_89_0, author = {Kobayashi, Toshiyuki and Speh, Birgit}, title = {Intertwining operators and the restriction of representations of rank-one orthogonal groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--94}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.11.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/} }
TY - JOUR AU - Kobayashi, Toshiyuki AU - Speh, Birgit TI - Intertwining operators and the restriction of representations of rank-one orthogonal groups JO - Comptes Rendus. Mathématique PY - 2014 SP - 89 EP - 94 VL - 352 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/ DO - 10.1016/j.crma.2013.11.018 LA - en ID - CRMATH_2014__352_2_89_0 ER -
%0 Journal Article %A Kobayashi, Toshiyuki %A Speh, Birgit %T Intertwining operators and the restriction of representations of rank-one orthogonal groups %J Comptes Rendus. Mathématique %D 2014 %P 89-94 %V 352 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/ %R 10.1016/j.crma.2013.11.018 %G en %F CRMATH_2014__352_2_89_0
Kobayashi, Toshiyuki; Speh, Birgit. Intertwining operators and the restriction of representations of rank-one orthogonal groups. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 89-94. doi : 10.1016/j.crma.2013.11.018. http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/
[1] On the decomposition of a representations of when restricted to , Can. J. Math., Volume 44 (1992), pp. 974-1002
[2] Families of Conformally Covariant Differential Operators, Q-curvature and Holography, Progress in Math., vol. 275, Birkhäuser, 2009 (xiv+488 p)
[3] Discrete decomposability of the restriction of with respect to reductive subgroups III – restriction of Harish-Chandra modules and associated varieties, Invent. Math., Volume 131 (1998), pp. 229-256
[4] F-method for constructing equivariant differential operators, Contemp. Math., vol. 598, Amer. Math. Soc., 2013, pp. 141-148
[5] F-method for symmetry breaking operators, Differ. Geom. Appl. (2013) (available at) | arXiv | DOI
[6] Finite multiplicity theorems for induction and restriction, Adv. Math., Volume 248 (2013), pp. 921-944 (available at) | arXiv
[7] Trilinear forms on , Pac. J. Math., Volume 197 (2001), pp. 119-144
[8] Multiplicity one theorems: the Archimedean case, Ann. Math., Volume 175 (2012), pp. 23-44
[9] Real Reductive Groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, 1992 (xiv+454 p)
Cité par Sources :