Lie algebras/Harmonic analysis
Intertwining operators and the restriction of representations of rank-one orthogonal groups
[Opérateurs dʼentrelacement et restriction des représentations des groupes orthogonaux de rang un]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 89-94.

Nous donnons une classification complète des opérateurs dʼentrelacement (opérateurs de brisure de symétrie) entre les représentations des séries principales sphériques de O(n+1,1) et de O(n,1) ainsi que des formules explicites pour les noyaux de Schwartz de ces opérateurs. Par la suite, nous déterminons les opérateurs de brisure de symétrie entre les facteurs irréductibles des séries de composition correspondantes.

We give a complete classification of intertwining operators (breaking symmetry operators) between spherical principal series representations of O(n+1,1) and O(n,1) together with explicit formulae of the distribution kernels. Further we use this to determine the breaking symmetry operators between their irreducible composition factors.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.018
Kobayashi, Toshiyuki 1 ; Speh, Birgit 2

1 Kavli IPMU (WPI), Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan
2 Department of Mathematics, Cornell University, Ithaca, 14853-4201, NY, USA
@article{CRMATH_2014__352_2_89_0,
     author = {Kobayashi, Toshiyuki and Speh, Birgit},
     title = {Intertwining operators and the restriction of representations of rank-one orthogonal groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {89--94},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/}
}
TY  - JOUR
AU  - Kobayashi, Toshiyuki
AU  - Speh, Birgit
TI  - Intertwining operators and the restriction of representations of rank-one orthogonal groups
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 89
EP  - 94
VL  - 352
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/
DO  - 10.1016/j.crma.2013.11.018
LA  - en
ID  - CRMATH_2014__352_2_89_0
ER  - 
%0 Journal Article
%A Kobayashi, Toshiyuki
%A Speh, Birgit
%T Intertwining operators and the restriction of representations of rank-one orthogonal groups
%J Comptes Rendus. Mathématique
%D 2014
%P 89-94
%V 352
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/
%R 10.1016/j.crma.2013.11.018
%G en
%F CRMATH_2014__352_2_89_0
Kobayashi, Toshiyuki; Speh, Birgit. Intertwining operators and the restriction of representations of rank-one orthogonal groups. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 89-94. doi : 10.1016/j.crma.2013.11.018. http://www.numdam.org/articles/10.1016/j.crma.2013.11.018/

[1] Gross, B.; Prasad, D. On the decomposition of a representations of SOn when restricted to SOn1, Can. J. Math., Volume 44 (1992), pp. 974-1002

[2] Juhl, A. Families of Conformally Covariant Differential Operators, Q-curvature and Holography, Progress in Math., vol. 275, Birkhäuser, 2009 (xiv+488 p)

[3] Kobayashi, T. Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups III – restriction of Harish-Chandra modules and associated varieties, Invent. Math., Volume 131 (1998), pp. 229-256

[4] Kobayashi, T. F-method for constructing equivariant differential operators, Contemp. Math., vol. 598, Amer. Math. Soc., 2013, pp. 141-148

[5] Kobayashi, T. F-method for symmetry breaking operators, Differ. Geom. Appl. (2013) (available at) | arXiv | DOI

[6] Kobayashi, T.; Oshima, T. Finite multiplicity theorems for induction and restriction, Adv. Math., Volume 248 (2013), pp. 921-944 (available at) | arXiv

[7] Loke, H.Y. Trilinear forms on gl2, Pac. J. Math., Volume 197 (2001), pp. 119-144

[8] Sun, B.; Zhu, C.-B. Multiplicity one theorems: the Archimedean case, Ann. Math., Volume 175 (2012), pp. 23-44

[9] Wallach, N. Real Reductive Groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, 1992 (xiv+454 p)

Cité par Sources :