Numerical analysis/Calculus of variations
New Poincaré-type inequalities
[Quelques inégalités de type Poincaré pour les champs de matrices quadratiques]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 163-166.

On présente quelques inégalités de type Poincaré pour les champs de matrices quadratiques, avec des applications, par exemple, en plasticité avec gradients ou en dynamique des fluides. En particulier, on discute des applications pour la formulation en vitesse de pseudo-tension du problème stationnaire de Stokes et pour la plasticité infinitésimale avec gradients.

We present some Poincaré-type inequalities for quadratic matrix fields with applications e.g. in gradient plasticity or fluid dynamics. In particular, applications to the pseudostress–velocity formulation of the stationary Stokes problem and to infinitesimal gradient plasticity are discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.017
Bauer, Sebastian 1 ; Neff, Patrizio 1 ; Pauly, Dirk 1 ; Starke, Gerhard 1

1 Fakultät für Mathematik, Universität Duisburg–Essen, Campus Essen, Thea-Leymann-Str. 9, 45141 Essen, Germany
@article{CRMATH_2014__352_2_163_0,
     author = {Bauer, Sebastian and Neff, Patrizio and Pauly, Dirk and Starke, Gerhard},
     title = {New {Poincar\'e-type} inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {163--166},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.017/}
}
TY  - JOUR
AU  - Bauer, Sebastian
AU  - Neff, Patrizio
AU  - Pauly, Dirk
AU  - Starke, Gerhard
TI  - New Poincaré-type inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 163
EP  - 166
VL  - 352
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.017/
DO  - 10.1016/j.crma.2013.11.017
LA  - en
ID  - CRMATH_2014__352_2_163_0
ER  - 
%0 Journal Article
%A Bauer, Sebastian
%A Neff, Patrizio
%A Pauly, Dirk
%A Starke, Gerhard
%T New Poincaré-type inequalities
%J Comptes Rendus. Mathématique
%D 2014
%P 163-166
%V 352
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.017/
%R 10.1016/j.crma.2013.11.017
%G en
%F CRMATH_2014__352_2_163_0
Bauer, Sebastian; Neff, Patrizio; Pauly, Dirk; Starke, Gerhard. New Poincaré-type inequalities. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 163-166. doi : 10.1016/j.crma.2013.11.017. http://www.numdam.org/articles/10.1016/j.crma.2013.11.017/

[1] Arnold, D.N.; Douglas, J.; Gupta, C.P. A family of higher order mixed finite element methods for plane elasticity, Numer. Math., Volume 45 (1984) no. 1, pp. 1-22

[2] Bauer, S.; Neff, P.; Pauly, D.; Starke, G. Dev–div- and devsym–devcurl-inequalities for incompatible square tensor fields with mixed boundary conditions (submitted for publication) | arXiv

[3] Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods, Springer, New York, 1991

[4] Cai, Z.; Lee, B.; Wang, P. Least squares methods for incompressible Newtonian fluid flow: Linear stationary problems, SIAM J. Numer. Anal., Volume 42 (2004), pp. 843-859

[5] Cai, Z.; Starke, G. Least squares methods for linear elasticity, SIAM J. Numer. Anal., Volume 42 (2004), pp. 826-842

[6] Cai, Z.; Tong, C.; Vassilevski, P.S.; Wang, C. Mixed finite element methods for incompressible flow: Stationary Stokes equations, Numer. Methods Partial Differ. Equ., Volume 26 (2010), pp. 957-978

[7] Dain, S. Generalized Kornʼs inequality and conformal Killing vectors, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 4, pp. 535-540

[8] Ebobisse, F.; Neff, P. Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin, Math. Mech. Solids, Volume 15 (2010) no. 6, pp. 691-703

[9] Fuchs, M. Generalizations of Kornʼs inequality based on gradient estimates in Orlicz spaces and applications to variational problems in 2D involving the trace free part of the symmetric gradient, J. Math. Sci. (N.Y.), Volume 167 (2010) no. 3, pp. 418-434

[10] Gatica, G.; Márquez, A.; Sánchez, M.A. Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1064-1079

[11] Jeong, J.; Neff, P. Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions, Math. Mech. Solids, Volume 15 (2010) no. 1, pp. 78-95

[12] Neff, P.; Chełmiński, K.; Alber, H.D. Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 2, pp. 1-40

[13] Neff, P.; Pauly, D.; Witsch, K.J. On a canonical extension of Kornʼs first inequality to H(Curl) motivated by gradient plasticity with plastic spin, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 23–24, pp. 1251-1254

[14] Neff, P.; Pauly, D.; Witsch, K.J. On a canonical extension of Kornʼs first and Poincaréʼs inequality to H(Curl), J. Math. Sci. (N.Y.), Volume 185 (2012) no. 5, pp. 721-727

[15] Neff, P.; Pauly, D.; Witsch, K.J. Maxwell meets Korn: a new coercive inequality for tensor fields in RN×N with square-integrable exterior derivative, Math. Methods Appl. Sci., Volume 35 (2012) no. 1, pp. 65-71

[16] P. Neff, D. Pauly, K.J. Witsch, Poincaré meets Korn via Maxwell: Extending Kornʼs first inequality to incompatible tensor fields, in: Modeling, Simulation and Optimization in Science and Technology (2 Workshops honoring Jacques Périaux and Roland Glowinski on the occasion of their 70th and 75th birthdays), Springer, 2013, accepted, . | arXiv

[17] Neff, P.; Pauly, D.; Witsch, K.J. On an extension of Kornʼs first inequality to incompatible tensor fields in arbitrary dimensions (submitted for publication) | arXiv

[18] Neff, P.; Sydow, A.; Wieners, C. Numerical approximation of incremental infinitesimal gradient plasticity, Int. J. Numer. Methods Eng., Volume 77 (2009) no. 3, pp. 414-436

[19] Nesenenko, S.; Neff, P. Well-posedness for dislocation based gradient visco-plasticity. I: Subdifferential case, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 1694-1712

[20] Nesenenko, S.; Neff, P. Well-posedness for dislocation based gradient visco-plasticity. II: Monotone case, MEMOCS: Math. Mech. Complex Syst., Volume 1 (2013) no. 2, pp. 149-176

[21] Sohr, H. The Navier–Stokes Equations, Birkhäuser, Basel, Switzerland, 2001

Cité par Sources :