Partial differential equations
Low- and high-energy solutions of nonlinear elliptic oscillatory problems
[Solutions à basse et haute énergie pour des problèmes elliptiques non linéaires avec terme oscillatoire]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 117-122.

Dans cette Note, nous étudions lʼexistence de solutions à basse ou à haute énergie pour une classe de problèmes elliptiques contenant un terme non linéaire oscillatoire autour de lʼorigine ou à lʼinfini. Nous mettons en évidence lʼeffet de compétition entre la non-linéarité oscillatoire, le terme à croissance polynomiale et les valeurs dʼun paramètre réel. Les preuves combinent des méthodes topologiques et variationnelles.

In this Note, we study the existence of low- or high-energy solutions for a class of elliptic problems containing a nonlinear term that oscillates either near the origin or at infinity. We point out the competition effect between the oscillatory nonlinearity, a polynomial growth term, and the values of a real parameter. The proofs combine related variational methods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.015
Molica Bisci, Giovanni 1 ; Rădulescu, Vicenţiu 2, 3 ; Servadei, Raffaella 4

1 Dipartimento Patrimonio, Architettura e Urbanistica, University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy
2 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
3 Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania
4 Dipartimento di Matematica e Informatica, Università della Calabria, Ponte Pietro Bucci 31 B, 87036 Arcavacata di Rende, Cosenza, Italy
@article{CRMATH_2014__352_2_117_0,
     author = {Molica Bisci, Giovanni and R\u{a}dulescu, Vicen\c{t}iu and Servadei, Raffaella},
     title = {Low- and high-energy solutions of nonlinear elliptic oscillatory problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {117--122},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.015/}
}
TY  - JOUR
AU  - Molica Bisci, Giovanni
AU  - Rădulescu, Vicenţiu
AU  - Servadei, Raffaella
TI  - Low- and high-energy solutions of nonlinear elliptic oscillatory problems
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 117
EP  - 122
VL  - 352
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.015/
DO  - 10.1016/j.crma.2013.11.015
LA  - en
ID  - CRMATH_2014__352_2_117_0
ER  - 
%0 Journal Article
%A Molica Bisci, Giovanni
%A Rădulescu, Vicenţiu
%A Servadei, Raffaella
%T Low- and high-energy solutions of nonlinear elliptic oscillatory problems
%J Comptes Rendus. Mathématique
%D 2014
%P 117-122
%V 352
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.015/
%R 10.1016/j.crma.2013.11.015
%G en
%F CRMATH_2014__352_2_117_0
Molica Bisci, Giovanni; Rădulescu, Vicenţiu; Servadei, Raffaella. Low- and high-energy solutions of nonlinear elliptic oscillatory problems. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 117-122. doi : 10.1016/j.crma.2013.11.015. http://www.numdam.org/articles/10.1016/j.crma.2013.11.015/

[1] Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994) no. 2, pp. 519-543

[2] Ciarlet, P.G. Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2013

[3] Ghoussoub, N.; Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5703-5743

[4] G. Molica Bisci, V. Rădulescu, R. Servadei, Competition phenomena for elliptic equations involving a general operator in divergence form, in preparation.

[5] Pucci, P.; Servadei, R. On weak solutions for p-Laplacian equations with weights, Atti Accad. Naz. Lincei, Volume 18 (2007), pp. 257-267

[6] Pucci, P.; Servadei, R. Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 505-537

Cité par Sources :