Dans cette article, on établit un principe variationnel pour lʼéquation des milieux poreux. On généralise ainsi la description de V.I. Arnold des flots dʼEuler par des géodésiques vues comme des points critiques dʼune fonctionnelle dʼénergie.
In this paper we state the variational principle for the weighted porous media equation. It extends V.I. Arnoldʼs approach to the description of Euler flows as a geodesics on some manifold, i.e. as critical points of some energy functional.
Accepté le :
Publié le :
@article{CRMATH_2014__352_1_31_0, author = {Antoniouk, Alexandra and Arnaudon, Marc}, title = {Variational principle for weighted porous media equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {31--34}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.014/} }
TY - JOUR AU - Antoniouk, Alexandra AU - Arnaudon, Marc TI - Variational principle for weighted porous media equation JO - Comptes Rendus. Mathématique PY - 2014 SP - 31 EP - 34 VL - 352 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.11.014/ DO - 10.1016/j.crma.2013.11.014 LA - en ID - CRMATH_2014__352_1_31_0 ER -
%0 Journal Article %A Antoniouk, Alexandra %A Arnaudon, Marc %T Variational principle for weighted porous media equation %J Comptes Rendus. Mathématique %D 2014 %P 31-34 %V 352 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.11.014/ %R 10.1016/j.crma.2013.11.014 %G en %F CRMATH_2014__352_1_31_0
Antoniouk, Alexandra; Arnaudon, Marc. Variational principle for weighted porous media equation. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 31-34. doi : 10.1016/j.crma.2013.11.014. http://www.numdam.org/articles/10.1016/j.crma.2013.11.014/
[1] Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., Volume 136 (2012) no. 8, pp. 857-881
[2] Sur la géométrie diffŕentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique des fuides parfaits, Ann. Inst. Fourier, Volume 16 (1966), pp. 316-361
[3] Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., Volume 275 (2007) no. 1, pp. 255-269
[4] A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., Volume 61 (2008) no. 3, pp. 330-345
[5] -Functional inequalities and weighted porous media equations, Potential Anal., Volume 28 (2008), pp. 35-59
[6] On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., Volume 6 (2008) no. 2, pp. 477-494
[7] Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., Volume 92 (1970) no. 1, pp. 102-163
[8] Stochastic least action principle for the incompressible Navier–Stokes equations, Physica D, Volume 239 (2010) no. 14, pp. 1236-1240
Cité par Sources :