Functional analysis/Mathematical physics
Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
[Le caractère bien posé et lʼapproximation dʼun problème dʼévolution des mesures de masse avec des conditions frontières sur le flux]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 51-54.

Dans cette Note, nous étudions lʼévolution de mesures (de masse) dans un intervalle borné où la dynamique non conservative est imposée à lʼaide de conditions frontières de type flux. Nous montrons le caractère bien posé du problème en exploitant des systèmes de particules et lʼaccumulation de masse provoquée par ces particules dans une couche limite tout près de la frontière active. Finalement, nous obtenons la vitesse de convergence de la procedure dʼapproximation ainsi que la structure de la condition de frontière concernant le problème limite.

This Note deals with imposing a flux boundary condition on a non-conservative measure-valued mass evolution problem posed on a bounded interval. To establish the well-posedness of the problem, we exploit particle system approximations of the mass accumulation in a thin layer near the active boundary. We derive the convergence rate for the approximation procedure as well as the structure of the flux boundary condition in the limit problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.012
Evers, Joep 1 ; Hille, Sander C. 2 ; Muntean, Adrian 1

1 CASA – Centre for Analysis, Scientific computing and Applications, ICMS – Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
2 Mathematical Institute, Leiden University, The Netherlands
@article{CRMATH_2014__352_1_51_0,
     author = {Evers, Joep and Hille, Sander C. and Muntean, Adrian},
     title = {Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {51--54},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.012/}
}
TY  - JOUR
AU  - Evers, Joep
AU  - Hille, Sander C.
AU  - Muntean, Adrian
TI  - Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 51
EP  - 54
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.012/
DO  - 10.1016/j.crma.2013.11.012
LA  - en
ID  - CRMATH_2014__352_1_51_0
ER  - 
%0 Journal Article
%A Evers, Joep
%A Hille, Sander C.
%A Muntean, Adrian
%T Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
%J Comptes Rendus. Mathématique
%D 2014
%P 51-54
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.012/
%R 10.1016/j.crma.2013.11.012
%G en
%F CRMATH_2014__352_1_51_0
Evers, Joep; Hille, Sander C.; Muntean, Adrian. Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 51-54. doi : 10.1016/j.crma.2013.11.012. http://www.numdam.org/articles/10.1016/j.crma.2013.11.012/

[1] Ackleh, A.S.; Ito, K. Measure-valued solutions for a hierarchically size-structured population, J. Differential Equations, Volume 217 (2005), pp. 431-455

[2] Canizo, J.A.; Carrillo, J.A.; Cuadrado, S. Measure solutions for some models in population dynamics, Acta Appl. Math., Volume 123 (2013), pp. 141-156

[3] Carrillo, J.A.; Colombo, R.M.; Gwiazda, P.; Ulikowska, A. Structured populations, cell growth and measure valued balance laws, J. Differential Equations, Volume 252 (2012), pp. 3245-3277

[4] Cirillo, E.N.M.; Muntean, A. Can cooperation slow down emergency evacuations?, C. R. Mecanique, Volume 340 (2012), pp. 625-628

[5] Evers, J.; Hille, S.C.; Muntean, A. (2012), pp. 12-35 (CASA Report, Eindhoven)

[6] Hille, S.C.; Worm, D.T.H. Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, Volume 63 (2009), pp. 351-371

[7] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983

[8] Taira, K. Semigroups, Boundary Value Problems and Markov Processes, Springer, Berlin, 2004

Cité par Sources :