Dans cette Note, nous proposons un nouvel estimateur de lʼentropie de Shanonn basé sur lʼestimateur à noyau de la densité de quantile. Nous obtenons la consistance et la normalité de lʼestimateur proposé.
In the present Note, we propose an estimator of Shanonnʼs entropy based on smooth estimators of quantile density. The consistency and asymptotic normality of the proposed estimates are obtained.
Accepté le :
Publié le :
@article{CRMATH_2014__352_1_75_0, author = {Bouzebda, Salim and Elhattab, Issam}, title = {New {Kernel-type} estimator of {Shanonn's} entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.011/} }
TY - JOUR AU - Bouzebda, Salim AU - Elhattab, Issam TI - New Kernel-type estimator of Shanonnʼs entropy JO - Comptes Rendus. Mathématique PY - 2014 SP - 75 EP - 80 VL - 352 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.11.011/ DO - 10.1016/j.crma.2013.11.011 LA - en ID - CRMATH_2014__352_1_75_0 ER -
%0 Journal Article %A Bouzebda, Salim %A Elhattab, Issam %T New Kernel-type estimator of Shanonnʼs entropy %J Comptes Rendus. Mathématique %D 2014 %P 75-80 %V 352 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.11.011/ %R 10.1016/j.crma.2013.11.011 %G en %F CRMATH_2014__352_1_75_0
Bouzebda, Salim; Elhattab, Issam. New Kernel-type estimator of Shanonnʼs entropy. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 75-80. doi : 10.1016/j.crma.2013.11.011. http://www.numdam.org/articles/10.1016/j.crma.2013.11.011/
[1] A nonparametric estimation of the entropy for absolutely continuous distributions, IEEE Trans. Inf. Theory, Volume IT-22 (1976) no. 3, pp. 372-375
[2] Information Theory, Intersci. Tracts Pure Appl. Math., vol. 19, Interscience Publishers, John Wiley & Sons, New York–London–Sydney, 1965
[3] Nonparametric entropy estimation: an overview, Int. J. Math. Stat. Sci., Volume 6 (1997) no. 1, pp. 17-39
[4] Rate distortion theory, A Mathematical Basis for Data Compression, Prentice-Hall Ser. Inf. Syst. Sci., Prentice Hall Inc., Englewood Cliffs, NJ, 1971
[5] A strong consistency of a nonparametric estimate of entropy under random censorship, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009) no. 13–14, pp. 821-826
[6] Uniform-in-bandwidth consistency for kernel-type estimators of Shannonʼs entropy, Electron. J. Stat., Volume 5 (2011), pp. 440-459
[7] New entropy estimator with an application to test of normality, Commun. Stat., Theory Methods, Volume 42 (2013) no. 12, pp. 2245-2270
[8] Uniform consistency of generalized kernel estimators of quantile density, Ann. Stat., Volume 23 (1995) no. 6, pp. 2285-2291
[9] Unified estimators of smooth quantile and quantile density functions, J. Stat. Plan. Inference, Volume 59 (1997) no. 2, pp. 291-307
[10] Elements of Information Theory, Wiley–Interscience [John Wiley & Sons], Hoboken, NJ, 2006
[11] Estimating the quantile-density function, Spetses, 1990 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 335, Kluwer Acad. Publ., Dordrecht (1991), pp. 213-223
[12] The estimation of functionals of a probability density and its derivatives, Teor. Verojatnost. i Primenen., Volume 18 (1973), pp. 662-668
[13] Monte Carlo comparison of four normality tests using different entropy estimates, Commun. Stat., Simul. Comput., Volume 30 (2001) no. 4, pp. 761-785
[14] On the estimation of the quantile density function, Stat. Probab. Lett., Volume 4 (1986) no. 2, pp. 69-73
[15] On the nonparametric estimation of the entropy functional, Spetses, 1990 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 335, Kluwer Acad. Publ., Dordrecht (1991), pp. 81-95
[16] Nonparametric statistical data modeling, J. Am. Stat. Assoc., Volume 74 (1979) no. 365, pp. 105-131 (with comments by John W. Tukey, Roy E. Welsch, William F. Eddy, D.V. Lindley, Michael E. Tarter and Edwin L. Crow, and a rejoinder by the author)
[17] Goodness of fit tests and entropy, J. Comb. Inf. Syst. Sci., Volume 16 (1991) no. 2–3, pp. 129-136
[18] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 (623–656)
[19] Limit theorems for nonparametric sample entropy estimators, Stat. Probab. Lett., Volume 49 (2000) no. 1, pp. 9-18
[20] Quantile based entropy function, Stat. Probab. Lett., Volume 82 (2012) no. 6, pp. 1049-1053
[21] Quantile based entropy function in past lifetime, Stat. Probab. Lett., Volume 83 (2013) no. 1, pp. 366-372
[22] Estimating functionals related to a density by a class of statistics based on spacings, Scand. J. Stat., Volume 19 (1992) no. 1, pp. 61-72
[23] A test for normality based on sample entropy, J. R. Stat. Soc. B, Volume 38 (1976) no. 1, pp. 54-59
[24] Entropy estimators—improvements and comparisons, Commun. Stat., Simul. Comput., Volume 28 (1999) no. 2, pp. 541-567
Cité par Sources :