Potential theory/Harmonic analysis
A limiting weak type estimate for capacitary maximal function
[Une estimation de type faible limite pour la fonction maximale capacitaire]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 7-11.

Pour lʼanalogue en termes de capacités de la fonction maximale de Hardy–Littlewood, on démontre une estimation de type faible limite correspondant à celle de P. Janakiraman.

A capacitary analogue of the limiting weak type estimate of P. Janakiraman for the Hardy–Littlewood maximal function of an L1(Rn)-function (cf. [5,6]) is discovered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.008
Xiao, Jie 1 ; Zhang, Ning 1

1 Department of Mathematics and Statistics, Memorial University, St. Johnʼs, NL A1C 5S7, Canada
@article{CRMATH_2014__352_1_7_0,
     author = {Xiao, Jie and Zhang, Ning},
     title = {A limiting weak type estimate for capacitary maximal function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {7--11},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.008/}
}
TY  - JOUR
AU  - Xiao, Jie
AU  - Zhang, Ning
TI  - A limiting weak type estimate for capacitary maximal function
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 7
EP  - 11
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.008/
DO  - 10.1016/j.crma.2013.11.008
LA  - en
ID  - CRMATH_2014__352_1_7_0
ER  - 
%0 Journal Article
%A Xiao, Jie
%A Zhang, Ning
%T A limiting weak type estimate for capacitary maximal function
%J Comptes Rendus. Mathématique
%D 2014
%P 7-11
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.008/
%R 10.1016/j.crma.2013.11.008
%G en
%F CRMATH_2014__352_1_7_0
Xiao, Jie; Zhang, Ning. A limiting weak type estimate for capacitary maximal function. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 7-11. doi : 10.1016/j.crma.2013.11.008. http://www.numdam.org/articles/10.1016/j.crma.2013.11.008/

[1] Adams, D.R. A note on Choquet integrals with respect to Hausdorff capacity, Lecture Notes in Mathematics, vol. 1302, Springer, 1988, pp. 115-124

[2] Adams, D.R. Choquet integrals in potential theory, Publ. Mat., Volume 42 (1998), pp. 3-66

[3] Asekritova, I.; Cerda, J.; Kruglyak, N. The Riesz–Herz equivalence for capacity maximal functions, Rev. Mat. Complut., Volume 25 (2012), pp. 43-59

[4] Brown, R. Lecture notes: harmonic analysis http://www.ms.uky.edu/~rbrown/courses/ma773/notes.pdf

[5] Janakiraman, P. Limiting weak-type behavior for singular integral and maximal operators, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 1937-1952

[6] Janakiraman, P. Limiting weak-type behavior for the Riesz transform and maximal operator when λ, Michigan Math. J., Volume 55 (2007), pp. 35-50

[7] Kinnunen, J. The Hardy–Littlewood maximal function of a Sobolev function, Israel J. Math., Volume 100 (1997), pp. 117-224

[8] Kruglyak, N.; Kuznetsov, E.A. Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat., Volume 44 (2006), pp. 309-326

[9] Xiao, J. Carleson embeddings for Sobelev spaces via heat equation, J. Differential Equations, Volume 224 (2006), pp. 277-295

Cité par Sources :

Project supported by NSERC of Canada as well as by URP of Memorial University, Canada.