Complex analysis
Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
[Estimation des coefficients des fonctions analytiques bi-presque convexes à lʼaide des polynômes de Faber]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 17-20.

Nous exprimons les coefficients des développements de fonctions analytiques bi-presque convexes en utilisant les polynômes de Faber, et nous en déduisons des estimations de ces coefficients. Une fonction est dite bi-univalente dans un domaine si elle et son inverse sont univalentes dans ce domaine. Nous montrons également le comportement imprévisible des premiers coefficients pour des sous-classes de fonctions bi-univalentes.

Using the Faber polynomials, we obtain coefficient expansions for analytic bi-close-to-convex functions and determine coefficient estimates for such functions. We also demonstrate the unpredictable behavior of the early coefficients of subclasses of bi-univalent functions. A function is said to be bi-univalent in a domain if both the function and its inverse map are univalent there.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.005
Hamidi, Samaneh G. 1 ; Jahangiri, Jay M. 2

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA
@article{CRMATH_2014__352_1_17_0,
     author = {Hamidi, Samaneh G. and Jahangiri, Jay M.},
     title = {Faber polynomial coefficient estimates for analytic bi-close-to-convex functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {17--20},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.005/}
}
TY  - JOUR
AU  - Hamidi, Samaneh G.
AU  - Jahangiri, Jay M.
TI  - Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 17
EP  - 20
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.005/
DO  - 10.1016/j.crma.2013.11.005
LA  - en
ID  - CRMATH_2014__352_1_17_0
ER  - 
%0 Journal Article
%A Hamidi, Samaneh G.
%A Jahangiri, Jay M.
%T Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
%J Comptes Rendus. Mathématique
%D 2014
%P 17-20
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.005/
%R 10.1016/j.crma.2013.11.005
%G en
%F CRMATH_2014__352_1_17_0
Hamidi, Samaneh G.; Jahangiri, Jay M. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 17-20. doi : 10.1016/j.crma.2013.11.005. http://www.numdam.org/articles/10.1016/j.crma.2013.11.005/

[1] Airault, H. Symmetric sums associated to the factorization of Grunsky coefficients, Montréal, Canada (27–29 April 2007)

[2] Airault, H. Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 MR2386197 (2009a:30037)

[3] Airault, H.; Bouali, A. Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)

[4] Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)

[5] Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis, Academic Press, London and New York, 1980 MR0623462 (82f:30001)

[6] Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)

[7] de Branges, L. A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1–2, pp. 137-152

[8] Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)

[9] Faber, G. Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)

[10] Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), pp. 1-4 (Art. ID 498159)

[11] Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352

[12] Kaplan, W. Close-to-convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185

[13] Lewin, M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)

[14] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[15] Taha, T.S. Topics in univalent function theory, University of London, 1981 (Ph.D. thesis)

[16] Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)

Cité par Sources :