Soit le sous-espace fermé de formé des fonctions holomorphes sur le disque unité . Pour une classe de fonctions sous-harmoniques , on établit une estimation ponctuelle du noyau de Bergman de .
Let denote the closed subspace of consisting of holomorphic functions in the unit disc . For certain class of subharmonic functions , we prove an upper pointwise estimate for the Bergman kernel for .
Accepté le :
Publié le :
@article{CRMATH_2014__352_1_13_0, author = {Asserda, Sa{\"\i}d and Hichame, Amal}, title = {Pointwise estimate for the {Bergman} kernel of the weighted {Bergman} spaces with exponential type weights}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--16}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/} }
TY - JOUR AU - Asserda, Saïd AU - Hichame, Amal TI - Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights JO - Comptes Rendus. Mathématique PY - 2014 SP - 13 EP - 16 VL - 352 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/ DO - 10.1016/j.crma.2013.11.001 LA - en ID - CRMATH_2014__352_1_13_0 ER -
%0 Journal Article %A Asserda, Saïd %A Hichame, Amal %T Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights %J Comptes Rendus. Mathématique %D 2014 %P 13-16 %V 352 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/ %R 10.1016/j.crma.2013.11.001 %G en %F CRMATH_2014__352_1_13_0
Asserda, Saïd; Hichame, Amal. Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 13-16. doi : 10.1016/j.crma.2013.11.001. http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/
[1] Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, Sep. 2013 | arXiv
[2] Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl., Volume 326 (2007), pp. 1370-1378
[3] Weighted estimates for the -equation, Columbus, OH, 1999 (Ohio State Univ. Math. Res. Inst. Publ.), Volume vol. 9, De Gruyter, Berlin (2001), pp. 43-57
[4] On the -equation in weighted norm in , J. Geom. Anal., Volume 1 (1991) no. 3, pp. 193-230
[5] Pointwise estimates for the weighted Bergman projection kernel in using a weighted estimate for the equation, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 4, pp. 967-997
[6] approximations of convex, subharmonic, and plurisubhrmonic functions, Ann. Sci. Ec. Norm. Super. (4), Volume 12 (1979) no. 1, pp. 47-84
[7] Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pac. J. Math., Volume 173 (1996) no. 1, pp. 127-146
[8] Sampling in weighted spaces of entire function in and estimates of the Bergman kernel, J. Funct. Anal., Volume 182 (2001), pp. 390-426
[9] Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal., Volume 19 (2009), pp. 890-910
[10] Imbedding theorems for weighted classes of harmonic and analytic functions, J. Sov. Math., Volume 2 (1974), pp. 135-142 translation in: Zap. Nauchn. Sem. LOMI Steklov 22 (1971)
[11] Carlesonʼs Imbedding theorems for a weighted Bergman spaces, Math. Notes, Volume 7 (1990), pp. 577-581
[12] New estimates for the minimal solution of and application to geometric function theory in weighted Bergman spaces, J. Reine Angew. Math. (2013) | DOI
Cité par Sources :