Complex analysis
Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
[Estimation ponctuelle du noyau de Bergman des espaces à poids de type exponentiel]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 13-16.

Soit ALϕ2(D) le sous-espace fermé de L2(D,e2ϕdλ) formé des fonctions holomorphes sur le disque unité D. Pour une classe de fonctions sous-harmoniques ϕ:DD, on établit une estimation ponctuelle du noyau de Bergman de ALϕ2(D).

Let ALϕ2(D) denote the closed subspace of L2(D,e2ϕdλ) consisting of holomorphic functions in the unit disc D. For certain class of subharmonic functions ϕ:DD, we prove an upper pointwise estimate for the Bergman kernel for ALϕ2(D).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.001
Asserda, Saïd 1 ; Hichame, Amal 2

1 Ibn Tofail University, Faculty of Sciences, Department of Mathematics, PO 242 Kenitra, Morocco
2 Regional Centre of Trades of Education and Training, Kenitra, Morocco
@article{CRMATH_2014__352_1_13_0,
     author = {Asserda, Sa{\"\i}d and Hichame, Amal},
     title = {Pointwise estimate for the {Bergman} kernel of the weighted {Bergman} spaces with exponential type weights},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--16},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/}
}
TY  - JOUR
AU  - Asserda, Saïd
AU  - Hichame, Amal
TI  - Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 13
EP  - 16
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/
DO  - 10.1016/j.crma.2013.11.001
LA  - en
ID  - CRMATH_2014__352_1_13_0
ER  - 
%0 Journal Article
%A Asserda, Saïd
%A Hichame, Amal
%T Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
%J Comptes Rendus. Mathématique
%D 2014
%P 13-16
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/
%R 10.1016/j.crma.2013.11.001
%G en
%F CRMATH_2014__352_1_13_0
Asserda, Saïd; Hichame, Amal. Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 13-16. doi : 10.1016/j.crma.2013.11.001. http://www.numdam.org/articles/10.1016/j.crma.2013.11.001/

[1] Arroussi, H.; Pau, J. Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, Sep. 2013 | arXiv

[2] Azagra, D.; Ferrera, J.; Lopez-Mesas, F.; Rangel, Y. Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl., Volume 326 (2007), pp. 1370-1378

[3] Berndtsson, B. Weighted estimates for the ¯-equation, Columbus, OH, 1999 (Ohio State Univ. Math. Res. Inst. Publ.), Volume vol. 9, De Gruyter, Berlin (2001), pp. 43-57

[4] Christ, M. On the ¯-equation in weighted L2 norm in C, J. Geom. Anal., Volume 1 (1991) no. 3, pp. 193-230

[5] Delin, H. Pointwise estimates for the weighted Bergman projection kernel in Cn using a weighted L2 estimate for the ¯ equation, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 4, pp. 967-997

[6] Greene, R.E.; Wu, H. C approximations of convex, subharmonic, and plurisubhrmonic functions, Ann. Sci. Ec. Norm. Super. (4), Volume 12 (1979) no. 1, pp. 47-84

[7] Lin, P.; Rochberg, R. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pac. J. Math., Volume 173 (1996) no. 1, pp. 127-146

[8] Lindholm, N. Sampling in weighted Lp spaces of entire function in Cn and estimates of the Bergman kernel, J. Funct. Anal., Volume 182 (2001), pp. 390-426

[9] Marzo, J.; Ortega-Cerdà, J. Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal., Volume 19 (2009), pp. 890-910

[10] Oleinik, V.L.; Pavlov, B.S. Imbedding theorems for weighted classes of harmonic and analytic functions, J. Sov. Math., Volume 2 (1974), pp. 135-142 translation in: Zap. Nauchn. Sem. LOMI Steklov 22 (1971)

[11] Oleinik, V.L.; Perelʼman, G.S. Carlesonʼs Imbedding theorems for a weighted Bergman spaces, Math. Notes, Volume 7 (1990), pp. 577-581

[12] Schuster, A.P.; Varolin, D. New estimates for the minimal L2 solution of ¯ and application to geometric function theory in weighted Bergman spaces, J. Reine Angew. Math. (2013) | DOI

Cité par Sources :