Geometry/Differential geometry
Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks
[Suites dʼAtiyah, connexions et formes caractéristiques pour les fibrés principaux sur les groupoïdes et les champs]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 59-64.

Nous construisons les connexions et formes caractéristiques pour les fibrés principaux sur les groupoïdes et les champs dans la catégorie différentiable, holomorphe et algébrique à lʼaide des suites dʼAtiyah associées aux distributions transversales tangentielles.

We construct connections and characteristic forms for principal bundles over groupoids and stacks in the differentiable, holomorphic and algebraic category using Atiyah exact sequences associated with transversal tangential distributions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.10.038
Biswas, Indranil 1 ; Neumann, Frank 2

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2 Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
@article{CRMATH_2014__352_1_59_0,
     author = {Biswas, Indranil and Neumann, Frank},
     title = {Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {59--64},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.10.038},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.038/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Neumann, Frank
TI  - Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 59
EP  - 64
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.038/
DO  - 10.1016/j.crma.2013.10.038
LA  - en
ID  - CRMATH_2014__352_1_59_0
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Neumann, Frank
%T Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks
%J Comptes Rendus. Mathématique
%D 2014
%P 59-64
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.038/
%R 10.1016/j.crma.2013.10.038
%G en
%F CRMATH_2014__352_1_59_0
Biswas, Indranil; Neumann, Frank. Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 59-64. doi : 10.1016/j.crma.2013.10.038. http://www.numdam.org/articles/10.1016/j.crma.2013.10.038/

[1] Atiyah, M.F. Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207

[2] Behrend, K. On the de Rham cohomology of differential and algebraic stacks, Adv. Math., Volume 198 (2005), pp. 583-622

[3] Behrend, K.; Xu, P. Differentiable stacks and gerbes, J. Symplectic Geom., Volume 9 (2011), pp. 285-341

[4] Biswas, I.; Majumder, S.; Wong, M.L. Root stacks, principal bundles and connections, Bull. Sci. Math., Volume 136 (2012), pp. 369-398

[5] I. Biswas, F. Neumann, Atiyah sequences, connections and Chern–Weil theory for algebraic and differentiable stacks, in preparation.

[6] Bott, R.; Shulman, H.; Stasheff, J. On the de Rham theory of certain classifying spaces, Adv. Math., Volume 20 (1976), pp. 43-56

[7] Cheeger, J.; Simons, J. Differential characters and geometric invariants, College Park, MD, 1983/84 (Lect. Notes Math.), Volume vol. 1167, Springer-Verlag, Berlin–New York (1985), pp. 50-80

[8] Crainic, M.; Fernandes, R.J. Secondary characteristic classes of Lie algebroids, Quantum Field Theory and Noncommutative Geometry, Lect. Notes Phys., vol. 662, Springer, Berlin, 2005, pp. 157-176

[9] Crainic, M.; Moerdijk, I. Čech–De Rham theory for leaf spaces of foliations, Math. Ann., Volume 328 (2004), pp. 59-85

[10] Esnault, H. Algebraic differential characters, Regulators in Analysis, Geometry and Number Theory, Prog. Math., vol. 171, Birkhäuser Boston, 2000, pp. 89-115

[11] Felisatti, M.; Neumann, F. Secondary theories for étale groupoids, Contemp. Math., Volume 571 (2012), pp. 135-151

[12] Heinloth, J. Notes on differentiable stacks (Tschinkel, Y., ed.), Mathematisches Institut Seminars, Georg-August Universität Göttingen, 2004, pp. 1-32

[13] Laurent-Gengoux, C.; Stiénon, P.; Xu, P. Non-Abelian differentiable gerbes, Adv. Math., Volume 220 (2009), pp. 1357-1427

[14] Laurent-Gengoux, C.; Tu, J.-L.; Xu, P. Chern–Weil map for principal bundles over groupoids, Math. Z., Volume 255 (2007), pp. 451-491

[15] Lerman, E.; Malkin, A. Hamiltonian group actions on symplectic Deligne–Mumford stacks and toric orbifolds, Adv. Math., Volume 229 (2012), pp. 984-1000

[16] Salazar Pinzón, M.A. Pfaffian groupoids, 2013 (PhD thesis, Utrecht) | arXiv

[17] Tang, X. Deformation quantization of pseudo-symplectic (Poisson) groupoids, Geom. Funct. Anal., Volume 16 (2006), pp. 731-766

Cité par Sources :