[Principes du maximum et inégalités isopérimétriques pour certains problèmes du type Monge–Ampère]
Dans cette note, nous obtenons un principe du maximum pour une combinaison fonctionnelle appropriée de
In this note we derive a maximum principle for an appropriate functional combination of
Accepté le :
Publié le :
@article{CRMATH_2014__352_1_37_0, author = {Enache, Cristian}, title = {Maximum principles and isoperimetric inequalities for some {Monge{\textendash}Amp\`ere-type} problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {37--42}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.10.035}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.10.035/} }
TY - JOUR AU - Enache, Cristian TI - Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems JO - Comptes Rendus. Mathématique PY - 2014 SP - 37 EP - 42 VL - 352 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.10.035/ DO - 10.1016/j.crma.2013.10.035 LA - en ID - CRMATH_2014__352_1_37_0 ER -
%0 Journal Article %A Enache, Cristian %T Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems %J Comptes Rendus. Mathématique %D 2014 %P 37-42 %V 352 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.10.035/ %R 10.1016/j.crma.2013.10.035 %G en %F CRMATH_2014__352_1_37_0
Enache, Cristian. Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 37-42. doi : 10.1016/j.crma.2013.10.035. https://www.numdam.org/articles/10.1016/j.crma.2013.10.035/
[1] A maximum principle for some fully nonlinear elliptic equations with applications to Weingarten surfaces, Complex Var. Elliptic Equ., Volume 58 (2013), pp. 1725-1736
[2] Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs, NoDEA – Nonlinear Differ. Equ. Appl., Volume 17 (2010) no. 5, pp. 591-600
[3] Necessary conditions of solvability and isoperimetric estimates for some Monge–Ampère problems in the plane, Proc. Amer. Math. Soc. (2013) (in press)
[4] Maximum and minimum principles for a class of Monge–Ampère equations in the plane, with applications to surfaces of constant Gauss curvature, Commun. Pure Appl. Anal. (2013) (in press)
[5] Elementare Bemerkung über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Berlin Sber. Preuss. Akad. Wiss., Volume 19 (1927), pp. 147-152
[6] A remark on linear elliptic differential equations of the second order, Proc. Amer. Math. Soc., Volume 36 (1952), pp. 791-793
[7] Solution of the Dirichlet problem for equations of mth order curvature, Mat. Sb., Volume 180 (1989) no. 7, pp. 867-887 (in Russian), translation in Math. USSR Sb., 67, 2, 1990, pp. 317-339
[8] A necessary condition of solvability for the capillarity boundary of Monge–Ampère equations in two dimensions, Proc. Amer. Math. Soc., Volume 127 (1999) no. 3, pp. 763-769
[9] Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature, Nonlinear Anal., Volume 3 (1979), pp. 193-211
[10] Some maximum principles and symmetry results for a class of boundary value problems involving the Monge–Ampère equation, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1073-1080
[11] Some applications of the maximum principle to a variety of fully nonlinear elliptic PDEʼs, Z. Angew. Math. Phys., Volume 54 (2003), pp. 739-755
[12] Applications of the maximum principle to a variety of problems involving elliptic and parabolic equations, Nonlinear Anal., Volume 47 (2001), pp. 661-679
[13] Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., Volume 117 (1993) no. 2, pp. 211-239
[14] Overdetermined problems for fully nonlinear elliptic equations, 2013 (preprint) | arXiv
[15] Maximum Principles and Their Applications, Mathematics in Science and Engineering, vol. 157, Academic Press, New York, 1981 (ix+224 p)
Cité par Sources :