Partial differential equations/Differential geometry
Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems
[Principes du maximum et inégalités isopérimétriques pour certains problèmes du type Monge–Ampère]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 37-42.

Dans cette note, nous obtenons un principe du maximum pour une combinaison fonctionnelle appropriée de u(x) et |u|2, où u(x) est une solution classique strictement convexe à une classe générale dʼéquations du type Monge–Ampère. Ce principe du maximum est ensuite utilisé pour établir certaines inégalités isopérimétriques dʼintérêt dans la théorie de surfaces de courbure de Gauss constante dans RN+1.

In this note we derive a maximum principle for an appropriate functional combination of u(x) and |u|2, where u(x) is a strictly convex classical solution to a general class of Monge–Ampère equations. This maximum principle is then employed to establish some isoperimetric inequalities of interest in the theory of surfaces of constant Gauss curvature in RN+1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.10.035
Enache, Cristian 1

1 Research group of the project PN-II-ID-PCE-2012-4-0021, “Simion Stoilow” Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
@article{CRMATH_2014__352_1_37_0,
     author = {Enache, Cristian},
     title = {Maximum principles and isoperimetric inequalities for some {Monge{\textendash}Amp\`ere-type} problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {37--42},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.10.035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.035/}
}
TY  - JOUR
AU  - Enache, Cristian
TI  - Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 37
EP  - 42
VL  - 352
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.035/
DO  - 10.1016/j.crma.2013.10.035
LA  - en
ID  - CRMATH_2014__352_1_37_0
ER  - 
%0 Journal Article
%A Enache, Cristian
%T Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems
%J Comptes Rendus. Mathématique
%D 2014
%P 37-42
%V 352
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.035/
%R 10.1016/j.crma.2013.10.035
%G en
%F CRMATH_2014__352_1_37_0
Enache, Cristian. Maximum principles and isoperimetric inequalities for some Monge–Ampère-type problems. Comptes Rendus. Mathématique, Tome 352 (2014) no. 1, pp. 37-42. doi : 10.1016/j.crma.2013.10.035. http://www.numdam.org/articles/10.1016/j.crma.2013.10.035/

[1] Barbu, L.; Enache, C. A maximum principle for some fully nonlinear elliptic equations with applications to Weingarten surfaces, Complex Var. Elliptic Equ., Volume 58 (2013), pp. 1725-1736

[2] Enache, C. Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs, NoDEA – Nonlinear Differ. Equ. Appl., Volume 17 (2010) no. 5, pp. 591-600

[3] Enache, C. Necessary conditions of solvability and isoperimetric estimates for some Monge–Ampère problems in the plane, Proc. Amer. Math. Soc. (2013) (in press)

[4] Enache, C. Maximum and minimum principles for a class of Monge–Ampère equations in the plane, with applications to surfaces of constant Gauss curvature, Commun. Pure Appl. Anal. (2013) (in press)

[5] Hopf, E. Elementare Bemerkung über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Berlin Sber. Preuss. Akad. Wiss., Volume 19 (1927), pp. 147-152

[6] Hopf, E. A remark on linear elliptic differential equations of the second order, Proc. Amer. Math. Soc., Volume 36 (1952), pp. 791-793

[7] Ivochkina, N.M. Solution of the Dirichlet problem for equations of mth order curvature, Mat. Sb., Volume 180 (1989) no. 7, pp. 867-887 (in Russian), translation in Math. USSR Sb., 67, 2, 1990, pp. 317-339

[8] Ma, X.-N. A necessary condition of solvability for the capillarity boundary of Monge–Ampère equations in two dimensions, Proc. Amer. Math. Soc., Volume 127 (1999) no. 3, pp. 763-769

[9] Payne, L.E.; Philippin, G.A. Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature, Nonlinear Anal., Volume 3 (1979), pp. 193-211

[10] Philippin, G.A.; Safoui, A. Some maximum principles and symmetry results for a class of boundary value problems involving the Monge–Ampère equation, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1073-1080

[11] Philippin, G.A.; Safoui, A. Some applications of the maximum principle to a variety of fully nonlinear elliptic PDEʼs, Z. Angew. Math. Phys., Volume 54 (2003), pp. 739-755

[12] Philippin, G.A.; Vernier-Piro, S. Applications of the maximum principle to a variety of problems involving elliptic and parabolic equations, Nonlinear Anal., Volume 47 (2001), pp. 661-679

[13] Rosenberg, H. Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., Volume 117 (1993) no. 2, pp. 211-239

[14] Silvestre, L.; Sirakov, B. Overdetermined problems for fully nonlinear elliptic equations, 2013 (preprint) | arXiv

[15] Sperb, R.P. Maximum Principles and Their Applications, Mathematics in Science and Engineering, vol. 157, Academic Press, New York, 1981 (ix+224 p)

Cité par Sources :