[Symétrie des composantes et théorèmes de Liouville pour des systèmes elliptiques non coopératifs dans le demi-espace]
Nous étudions les solutions classiques de systèmes elliptiques dans le demi-espace et donnons des conditions suffisantes assurant la symétrie (ou la proportionnalité) des composantes, i.e. avec , ce qui réduit alors le système au cas scalaire. Sous une condition naturelle de structure sur les non-linéarités, nous montrons que les solutions à croissance sous-linéaire, donc en particulier les solutions bornées, sont symétriques. Ce résultat couvre le cas de systèmes non coopératifs, non variationnels et éventuellement sur-critiques. Nous obtenons aussi des résultats de proportionnalité sans hypothèse de croissance sur les solutions. Comme conséquence, nous obtenons de nouveaux théorèmes de type Liouville dans le demi-espace, ainsi que des estimations a priori et des résultats d'existence pour des problèmes de Dirichlet associés. Nos preuves reposent sur un principe du maximum, sur les propriétés de moyennes semi-sphériques, sur un résultat de rigidité pour les fonctions surharmoniques et sur la nonexistence de solution pour des inéquations scalaires dans le demi-espace.
We study classical solutions of elliptic systems in the half-space and provide sufficient conditions for having symmetry (or proportionality) of components, i.e. with , which then reduces the system to the scalar case. Under a natural structure condition on the nonlinearities, we show that solutions with sublinear growth, hence in particular bounded solutions, are symmetric. Noncooperative, nonvariational systems as well as supercritical nonlinearities can be covered. We also give an instance of our proportionality results without growth restriction on the solutions. As a consequence, we obtain new Liouville-type theorems in the half-space, as well as a priori estimates and existence results for related Dirichlet problems. Our proofs are based on a maximum principle, on the properties of suitable half-spherical means, on a rigidity result for superharmonic functions and on nonexistence of solution for scalar inequalities on the half-space.
Accepté le :
Publié le :
@article{CRMATH_2014__352_4_321_0, author = {Montaru, Alexandre and Souplet, Philippe}, title = {Symmetry of components and {Liouville} theorems for noncooperative elliptic systems on the half-space}, journal = {Comptes Rendus. Math\'ematique}, pages = {321--325}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2013.10.033}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.033/} }
TY - JOUR AU - Montaru, Alexandre AU - Souplet, Philippe TI - Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space JO - Comptes Rendus. Mathématique PY - 2014 SP - 321 EP - 325 VL - 352 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.10.033/ DO - 10.1016/j.crma.2013.10.033 LA - en ID - CRMATH_2014__352_4_321_0 ER -
%0 Journal Article %A Montaru, Alexandre %A Souplet, Philippe %T Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space %J Comptes Rendus. Mathématique %D 2014 %P 321-325 %V 352 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.10.033/ %R 10.1016/j.crma.2013.10.033 %G en %F CRMATH_2014__352_4_321_0
Montaru, Alexandre; Souplet, Philippe. Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 321-325. doi : 10.1016/j.crma.2013.10.033. http://www.numdam.org/articles/10.1016/j.crma.2013.10.033/
[1] Nonvariational elliptic systems, Temuco, 1999 (Discrete Contin. Dyn. Syst.), Volume 8 (2002) no. 2, pp. 289-302
[2] Positive solutions for a quasilinear system via blow up, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 2071-2106
[3] A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 953-969
[4] On the symbiotic Lotka–Volterra model with diffusion and transport effects, J. Differ. Equ., Volume 160 (2000), pp. 175-262
[5] Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations, J. Math. Anal. Appl., Volume 319 (2006), pp. 157-176
[6] Half-spherical means and boundary behaviour of subharmonic functions in half-spaces, Hiroshima Math. J., Volume 13 (1983) no. 2, pp. 339-348
[7] A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., Volume 6 (1981) no. 8, pp. 883-901
[8] Y.Y. Li, C. Lin, L. Nirenberg, Nonexistence results to cooperative systems with supercritical exponents in , preprint, 2013.
[9] Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, Volume 19 (2006), pp. 2755-2773
[10] Necessary and sufficient condition for the existence of positive solutions of certain cooperative system, Nonlinear Anal., Volume 26 (1996), pp. 1079-1095
[11] A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1-384 (in Russian); translation in: Proc. Steklov Inst. Math. 3 (234) (2001) 1–362
[12] Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems (Arch. Ration. Mech. Anal. to appear) | DOI
[13] Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012), pp. 2545-2559
Cité par Sources :