[Symétrie des composantes et théorèmes de Liouville pour des systèmes elliptiques non coopératifs dans le demi-espace]
Nous étudions les solutions classiques de systèmes elliptiques dans le demi-espace et donnons des conditions suffisantes assurant la symétrie (ou la proportionnalité) des composantes, i.e.
We study classical solutions of elliptic systems in the half-space and provide sufficient conditions for having symmetry (or proportionality) of components, i.e.
Accepté le :
Publié le :
@article{CRMATH_2014__352_4_321_0, author = {Montaru, Alexandre and Souplet, Philippe}, title = {Symmetry of components and {Liouville} theorems for noncooperative elliptic systems on the half-space}, journal = {Comptes Rendus. Math\'ematique}, pages = {321--325}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2013.10.033}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.10.033/} }
TY - JOUR AU - Montaru, Alexandre AU - Souplet, Philippe TI - Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space JO - Comptes Rendus. Mathématique PY - 2014 SP - 321 EP - 325 VL - 352 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.10.033/ DO - 10.1016/j.crma.2013.10.033 LA - en ID - CRMATH_2014__352_4_321_0 ER -
%0 Journal Article %A Montaru, Alexandre %A Souplet, Philippe %T Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space %J Comptes Rendus. Mathématique %D 2014 %P 321-325 %V 352 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.10.033/ %R 10.1016/j.crma.2013.10.033 %G en %F CRMATH_2014__352_4_321_0
Montaru, Alexandre; Souplet, Philippe. Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space. Comptes Rendus. Mathématique, Tome 352 (2014) no. 4, pp. 321-325. doi : 10.1016/j.crma.2013.10.033. https://www.numdam.org/articles/10.1016/j.crma.2013.10.033/
[1] Nonvariational elliptic systems, Temuco, 1999 (Discrete Contin. Dyn. Syst.), Volume 8 (2002) no. 2, pp. 289-302
[2] Positive solutions for a quasilinear system via blow up, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 2071-2106
[3] A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 953-969
[4] On the symbiotic Lotka–Volterra model with diffusion and transport effects, J. Differ. Equ., Volume 160 (2000), pp. 175-262
[5] Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations, J. Math. Anal. Appl., Volume 319 (2006), pp. 157-176
[6] Half-spherical means and boundary behaviour of subharmonic functions in half-spaces, Hiroshima Math. J., Volume 13 (1983) no. 2, pp. 339-348
[7] A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., Volume 6 (1981) no. 8, pp. 883-901
[8] Y.Y. Li, C. Lin, L. Nirenberg, Nonexistence results to cooperative systems with supercritical exponents in
[9] Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, Volume 19 (2006), pp. 2755-2773
[10] Necessary and sufficient condition for the existence of positive solutions of certain cooperative system, Nonlinear Anal., Volume 26 (1996), pp. 1079-1095
[11] A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1-384 (in Russian); translation in: Proc. Steklov Inst. Math. 3 (234) (2001) 1–362
[12] Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems (Arch. Ration. Mech. Anal. to appear) | DOI
[13] Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012), pp. 2545-2559
Cité par Sources :