Partial differential equations
Cauchy problem for effectively hyperbolic operators with triple characteristics
[Problème de Cauchy pour des opérateurs effectivement hyperboliques ayant des caractéristiques triples]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 109-112.

On étudie une classe dʼopérateurs effectivement hyperboliques P dans G={(t,x):0tT,xURn} ayant des caractéristiques triples pour ρ=(0,x0,ξ),ξRn{0}. V. Ivrii a introduit la conjecture selon laquelle chaque opérateur effectivement hyperbolique est fortement hyperbolique, cʼest-à-dire telle que le problème de Cauchy pour P+Q soit localement bien posé pour tout opérateur Q dʼordre inférieur à celui de P. Pour des opérateurs ayant des caractéristiques triples, cette conjecture a été démontrée [3] pour le cas où le symbole principal de P admet une factorisation comme produit de deux symboles du type principal. Un opérateur fortement hyperbolique pourrait avoir des caractéristiques triples seulement pour t=0 ou pour t=T. Les opérateurs que nous examinons ont en général un symbole principal qui nʼest pas factorisable, et nous prouvons quʼils sont fortement hyperboliques si T est suffisamment petit.

We study a class of third-order effectively hyperbolic operators P in G={(t,x):0tT,xURn} with triple characteristics at ρ=(0,x0,ξ),ξRn{0}. V. Ivrii introduced the conjecture that every effectively hyperbolic operator is strongly hyperbolic, that is the Cauchy problem for P+Q is locally well posed for any lower-order terms Q. For operators with triple characteristics, this conjecture was established [3] in the case when the principal symbol of P admits a factorization as a product of two symbols of principal type. A strongly hyperbolic operator in G could have triple characteristics in G only for t=0 or for t=T. The operators that we investigate have a principal symbol which in general is not factorizable and we prove that these operators are strongly hyperbolic if T is small enough.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.10.009
Bernardi, Enrico 1 ; Bove, Antonio 2 ; Petkov, Vesselin 3

1 Dipartimento di Scienze Statistiche, Università di Bologna, Viale Filopanti 5, 40126 Bologna, Italy
2 Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna, Italy
3 Université Bordeaux I, Institut de Mathématiques, 351, cours de la Libération, 33405 Talence, France
@article{CRMATH_2014__352_2_109_0,
     author = {Bernardi, Enrico and Bove, Antonio and Petkov, Vesselin},
     title = {Cauchy problem for effectively hyperbolic operators with triple characteristics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {109--112},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.10.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/}
}
TY  - JOUR
AU  - Bernardi, Enrico
AU  - Bove, Antonio
AU  - Petkov, Vesselin
TI  - Cauchy problem for effectively hyperbolic operators with triple characteristics
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 109
EP  - 112
VL  - 352
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/
DO  - 10.1016/j.crma.2013.10.009
LA  - en
ID  - CRMATH_2014__352_2_109_0
ER  - 
%0 Journal Article
%A Bernardi, Enrico
%A Bove, Antonio
%A Petkov, Vesselin
%T Cauchy problem for effectively hyperbolic operators with triple characteristics
%J Comptes Rendus. Mathématique
%D 2014
%P 109-112
%V 352
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/
%R 10.1016/j.crma.2013.10.009
%G en
%F CRMATH_2014__352_2_109_0
Bernardi, Enrico; Bove, Antonio; Petkov, Vesselin. Cauchy problem for effectively hyperbolic operators with triple characteristics. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 109-112. doi : 10.1016/j.crma.2013.10.009. http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/

[1] Bernardi, E.; Bove, A.; Petkov, V. Cauchy problem for effectively hyperbolic operators with triple characteristics of variable multiplicities | arXiv

[2] Hörmander, L. Analysis of Linear Partial Differential Operators, III, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985

[3] Ivrii, V. Sufficient conditions for regular and completely regular hyperbolicity, Tr. Mosk. Mat. Obš., Volume 33 (1976), pp. 3-66 (in Russian), English translation: Trans. Mosc. Math. Soc. 1 (1978) 165

[4] Ivrii, V.Ja.; Petkov, V.M. Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well posed, Usp. Mat. Nauk, Volume 29 (1974) no. 5, pp. 1-70 (in Russian), English translation: Russ. Math. Surv. 29(5) (1974) 3–70

[5] Iwasaki, N. The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ., Volume 25 (1985), pp. 727-743

[6] Melrose, R. The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J., Volume 12 (1983), pp. 371-391

[7] Nishitani, T. Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ., Volume 24 (1984), pp. 623-658 (and 659–666)

[8] Oleinik, O.A. On the Cauchy problem for weakly hyperbolic equations, Commun. Pure Appl. Math., Volume 23 (1970), pp. 569-586

Cité par Sources :