On étudie une classe dʼopérateurs effectivement hyperboliques P dans ayant des caractéristiques triples pour . V. Ivrii a introduit la conjecture selon laquelle chaque opérateur effectivement hyperbolique est fortement hyperbolique, cʼest-à-dire telle que le problème de Cauchy pour soit localement bien posé pour tout opérateur Q dʼordre inférieur à celui de P. Pour des opérateurs ayant des caractéristiques triples, cette conjecture a été démontrée [3] pour le cas où le symbole principal de P admet une factorisation comme produit de deux symboles du type principal. Un opérateur fortement hyperbolique pourrait avoir des caractéristiques triples seulement pour ou pour . Les opérateurs que nous examinons ont en général un symbole principal qui nʼest pas factorisable, et nous prouvons quʼils sont fortement hyperboliques si T est suffisamment petit.
We study a class of third-order effectively hyperbolic operators P in with triple characteristics at . V. Ivrii introduced the conjecture that every effectively hyperbolic operator is strongly hyperbolic, that is the Cauchy problem for is locally well posed for any lower-order terms Q. For operators with triple characteristics, this conjecture was established [3] in the case when the principal symbol of P admits a factorization as a product of two symbols of principal type. A strongly hyperbolic operator in G could have triple characteristics in G only for or for . The operators that we investigate have a principal symbol which in general is not factorizable and we prove that these operators are strongly hyperbolic if T is small enough.
Accepté le :
Publié le :
@article{CRMATH_2014__352_2_109_0, author = {Bernardi, Enrico and Bove, Antonio and Petkov, Vesselin}, title = {Cauchy problem for effectively hyperbolic operators with triple characteristics}, journal = {Comptes Rendus. Math\'ematique}, pages = {109--112}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.10.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/} }
TY - JOUR AU - Bernardi, Enrico AU - Bove, Antonio AU - Petkov, Vesselin TI - Cauchy problem for effectively hyperbolic operators with triple characteristics JO - Comptes Rendus. Mathématique PY - 2014 SP - 109 EP - 112 VL - 352 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/ DO - 10.1016/j.crma.2013.10.009 LA - en ID - CRMATH_2014__352_2_109_0 ER -
%0 Journal Article %A Bernardi, Enrico %A Bove, Antonio %A Petkov, Vesselin %T Cauchy problem for effectively hyperbolic operators with triple characteristics %J Comptes Rendus. Mathématique %D 2014 %P 109-112 %V 352 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/ %R 10.1016/j.crma.2013.10.009 %G en %F CRMATH_2014__352_2_109_0
Bernardi, Enrico; Bove, Antonio; Petkov, Vesselin. Cauchy problem for effectively hyperbolic operators with triple characteristics. Comptes Rendus. Mathématique, Tome 352 (2014) no. 2, pp. 109-112. doi : 10.1016/j.crma.2013.10.009. http://www.numdam.org/articles/10.1016/j.crma.2013.10.009/
[1] Cauchy problem for effectively hyperbolic operators with triple characteristics of variable multiplicities | arXiv
[2] Analysis of Linear Partial Differential Operators, III, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985
[3] Sufficient conditions for regular and completely regular hyperbolicity, Tr. Mosk. Mat. Obš., Volume 33 (1976), pp. 3-66 (in Russian), English translation: Trans. Mosc. Math. Soc. 1 (1978) 165
[4] Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well posed, Usp. Mat. Nauk, Volume 29 (1974) no. 5, pp. 1-70 (in Russian), English translation: Russ. Math. Surv. 29(5) (1974) 3–70
[5] The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ., Volume 25 (1985), pp. 727-743
[6] The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J., Volume 12 (1983), pp. 371-391
[7] Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ., Volume 24 (1984), pp. 623-658 (and 659–666)
[8] On the Cauchy problem for weakly hyperbolic equations, Commun. Pure Appl. Math., Volume 23 (1970), pp. 569-586
Cité par Sources :