[Honnêteté dans un modèle discret non local de fragmentation structurée aléatoire en espace dans le cas de taux non bornés]
Dans un processus dʼagrégation discret non local, un problème fondamental se pose lorsque chaque taux de fragmentation tend vers lʼinfini à lʼinfini. Dans cette Note, on étudie le problème de Cauchy discret dans le cas où les taux de fragmentation décrivent des processus de fragmentation multiple au moyen dʼopérateurs dépendant de paramètres et de la théorie des semi-groupes sous-stochastiques dépendant dʼun paramètre. On se concentre sur le cas où les taux de fragmentation dépendent de la dimension et de la position et où de nouvelles particules sont distribuées de manière aléatoire suivant une certaine loi de probabilité. À la différence de [8], qui traite dʼun modèle discret à taux de fragmentation borné, on utilise le théorème de Kato dans le cas [2] et le théorème de la convergence dominée [4] pour démontrer lʼexistence dʼun générateur infinitésimal dʼun semi-groupe de contactions positif ; on donne des conditions suffisantes dʼhonnêteté dans le cas de taux de fragmentation non bornés. Fondamentalement, on démontre que, même dans le cas discret et non local, le processus est conservatif si, à lʼinfini, les particules filles tendent à rentrer dans le système avec une grande probabilité.
In the process of discrete and nonlocal aggregation, the major problem arises when each fragmentation rate becomes infinite at infinity. In this paper, a discrete Cauchy problem describing multiple fragmentation processes is investigated by means of parameter-dependent operators together with the theory of substochastic semigroups with a parameter. We focus on the case where fragmentation rates are size and position dependent and where new particles are spatially randomly distributed according to a certain probabilistic law. Unlike [8], where the discrete model with bounded fragmentation rates is treated, we use, in this paper, Katoʼs theorem in [2] and the dominated convergence theorem [4] to show the existence of the infinitesimal generator of a positive semigroup of contractions and give sufficient conditions for honesty in the case of unbounded fragmentation rates. Essentially, we demonstrate that, even in the discrete and nonlocal case, the process is conservative if at infinity daughter particles tend to go back into the system with a high probability.
Accepté le :
Publié le :
@article{CRMATH_2013__351_19-20_753_0, author = {Doungmo Goufo, Emile Franc and Oukouomi Noutchie, Suares Clovis}, title = {Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates}, journal = {Comptes Rendus. Math\'ematique}, pages = {753--759}, publisher = {Elsevier}, volume = {351}, number = {19-20}, year = {2013}, doi = {10.1016/j.crma.2013.09.023}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.09.023/} }
TY - JOUR AU - Doungmo Goufo, Emile Franc AU - Oukouomi Noutchie, Suares Clovis TI - Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates JO - Comptes Rendus. Mathématique PY - 2013 SP - 753 EP - 759 VL - 351 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.09.023/ DO - 10.1016/j.crma.2013.09.023 LA - en ID - CRMATH_2013__351_19-20_753_0 ER -
%0 Journal Article %A Doungmo Goufo, Emile Franc %A Oukouomi Noutchie, Suares Clovis %T Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates %J Comptes Rendus. Mathématique %D 2013 %P 753-759 %V 351 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.09.023/ %R 10.1016/j.crma.2013.09.023 %G en %F CRMATH_2013__351_19-20_753_0
Doungmo Goufo, Emile Franc; Oukouomi Noutchie, Suares Clovis. Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates. Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 753-759. doi : 10.1016/j.crma.2013.09.023. http://www.numdam.org/articles/10.1016/j.crma.2013.09.023/
[1] Kinetic-type models with diffusion: Conservative and nonconservative solutions, Transp. Theory Stat. Phys., Volume 36 (2007) no. 1, pp. 43-65
[2] Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, 2006
[3] The discrete fragmentation equation: semigroups, compactness and asynchronous exponential growth, Kinet. Relat. Models, Volume 5 (June 2012) no. 2
[4] The Elements of Integration and Lebesgue Measure, Wiley–Interscience Publisher, 1995
[5] Boltzmann equation for inelastic scattering, J. Phys. A, Volume 27 (1994), pp. 2709-2717
[6] Loss of mass in deterministic and random fragmentation, Stochastic Process. Appl., Volume 106 (August 2003) no. 2, pp. 245-277
[7] Space homogeneous solutions of the linear semiconductor Boltzmann equation, J. Math. Anal. Appl., Volume 259 (2001) no. 2, pp. 609-629
[8] On the honesty in nonlocal and discrete fragmentation dynamics in size and random position, ISRN Math. Anal., Volume 2013 (2013) (Article ID 908753, 7 p.) | DOI
[9] Explosion phenomena in stochastic coagulation-fragmentation models, Ann. Appl. Probab., Volume 15 (2005) no. 3, pp. 2081-2112
[10] The kinetics of cluster fragmentation and depolymerization, J. Phys. A, Volume 18 (1985), pp. 3027-3037
[11] “Shattering” transition in fragmentation, Phys. Rev. Lett., Volume 58 (1987) no. 9, pp. 892-895
Cité par Sources :