Le théorème principal reliant les hamiltoniens convexes et les solutions de viscosité semicontinues, due à Barron et Jensen, est étendu aux hamiltoniens quasi-convexes. Quelques applications sont indiquées.
The main theorem connecting convex Hamiltonians and semicontinuous viscosity solutions due to Barron and Jensen is extended to quasiconvex Hamiltonians. Some applications are indicated.
Accepté le :
Publié le :
@article{CRMATH_2013__351_19-20_737_0, author = {Barron, Emmanuel N.}, title = {Semicontinuous viscosity solutions for quasiconvex {Hamiltonians}}, journal = {Comptes Rendus. Math\'ematique}, pages = {737--741}, publisher = {Elsevier}, volume = {351}, number = {19-20}, year = {2013}, doi = {10.1016/j.crma.2013.09.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.09.021/} }
TY - JOUR AU - Barron, Emmanuel N. TI - Semicontinuous viscosity solutions for quasiconvex Hamiltonians JO - Comptes Rendus. Mathématique PY - 2013 SP - 737 EP - 741 VL - 351 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.09.021/ DO - 10.1016/j.crma.2013.09.021 LA - en ID - CRMATH_2013__351_19-20_737_0 ER -
%0 Journal Article %A Barron, Emmanuel N. %T Semicontinuous viscosity solutions for quasiconvex Hamiltonians %J Comptes Rendus. Mathématique %D 2013 %P 737-741 %V 351 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.09.021/ %R 10.1016/j.crma.2013.09.021 %G en %F CRMATH_2013__351_19-20_737_0
Barron, Emmanuel N. Semicontinuous viscosity solutions for quasiconvex Hamiltonians. Comptes Rendus. Mathématique, Tome 351 (2013) no. 19-20, pp. 737-741. doi : 10.1016/j.crma.2013.09.021. http://www.numdam.org/articles/10.1016/j.crma.2013.09.021/
[1] Hopf–Lax formulas for semicontinuous data, Indiana Univ. Math. J., Volume 48 (1999), pp. 993-1035
[2] Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser Boston, Inc., Boston, MA, 1997
[3] Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques et Applications, vol. 17, Springer, Paris, 1994
[4] Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 15 (1990) no. 12, pp. 1713-1740
[5] Calculus of variations in , Appl. Math. Optim., Volume 35 (1997), pp. 237-263
[6] Semicontinuous solutions for Hamilton–Jacobi equations and the control problem, Appl. Math. Optim., Volume 34 (1996), pp. 325-360
[7] Hopf–Lax formula for : II, Comm. Partial Differential Equations, Volume 22 (1997), pp. 1141-1160
[8] Lower semicontinuous solutions of Hamilton–Jacobi–Bellman equations, SIAM J. Control Optim., Volume 31 (1993) no. 1, pp. 257-272
[9] A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions, Proc. R. Soc. Edinb. A, Volume 131 (2001) no. 1, pp. 137-154
[10] Discontinuous viscosity solutions to Dirichlet problems for Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 18 (1993), pp. 1493-1514
Cité par Sources :